generate_hierarchical_df¶
- generate_hierarchical_df(periods: int, n_segments: List[int], freq: str = 'D', start_time: str = '2000-01-01', ar_coef: Optional[list] = None, sigma: float = 1, random_seed: int = 1) pandas.core.frame.DataFrame[source]¶
Create DataFrame with hierarchical structure and AR process data.
- The hierarchical structure is generated as follows:
Number of levels in the structure is the same as length of
n_segmentsparameterEach level contains the number of segments set in
n_segmentsConnections from parent to child level are generated randomly.
- Parameters
periods (int) – number of timestamps
n_segments (List[int]) – number of segments on each level.
freq (str) – pandas frequency string for
pandas.date_range()that is used to generate timestampstart_time (str) – start timestamp
ar_coef (Optional[list]) – AR coefficients
sigma (float) – scale of AR noise
random_seed (int) – random seed
- Returns
DataFrame at the bottom level of the hierarchy
- Raises
ValueError: –
n_segmentsis emptyValueError: –
n_segmentscontains not positive integersValueError: –
n_segmentsrepresents not non-decreasing sequence
- Return type
pandas.core.frame.DataFrame