HierarchicalPipeline¶
- class HierarchicalPipeline(reconciliator: etna.reconciliation.base.BaseReconciliator, model: Union[etna.models.base.NonPredictionIntervalContextIgnorantAbstractModel, etna.models.base.NonPredictionIntervalContextRequiredAbstractModel, etna.models.base.PredictionIntervalContextIgnorantAbstractModel, etna.models.base.PredictionIntervalContextRequiredAbstractModel], transforms: Sequence[etna.transforms.base.Transform] = (), horizon: int = 1)[source]¶
Bases:
etna.pipeline.pipeline.Pipeline
Pipeline of transforms with a final estimator for hierarchical time series data.
Create instance of HierarchicalPipeline with given parameters.
- Parameters
reconciliator (etna.reconciliation.base.BaseReconciliator) – Instance of reconciliation method
model (Union[etna.models.base.NonPredictionIntervalContextIgnorantAbstractModel, etna.models.base.NonPredictionIntervalContextRequiredAbstractModel, etna.models.base.PredictionIntervalContextIgnorantAbstractModel, etna.models.base.PredictionIntervalContextRequiredAbstractModel]) – Instance of the etna Model
transforms (Sequence[etna.transforms.base.Transform]) – Sequence of the transforms
horizon (int) – Number of timestamps in the future for forecasting
Warning
Estimation of forecast intervals with forecast(prediction_interval=True) method and BottomUpReconciliator may be not reliable.
- Inherited-members
- Parameters
reconciliator (etna.reconciliation.base.BaseReconciliator) –
model (Union[etna.models.base.NonPredictionIntervalContextIgnorantAbstractModel, etna.models.base.NonPredictionIntervalContextRequiredAbstractModel, etna.models.base.PredictionIntervalContextIgnorantAbstractModel, etna.models.base.PredictionIntervalContextRequiredAbstractModel]) –
transforms (Sequence[etna.transforms.base.Transform]) –
horizon (int) –
Methods
backtest
(ts, metrics[, n_folds, mode, ...])Run backtest with the pipeline.
fit
(ts)Fit the HierarchicalPipeline.
forecast
([prediction_interval, quantiles, ...])Make a prediction for target at the source level of hierarchy and make reconciliation to target level.
load
(path[, ts])Load an object.
predict
(ts[, start_timestamp, ...])Make in-sample predictions on dataset in a given range.
raw_forecast
([prediction_interval, ...])Make a prediction for target at the source level of hierarchy.
save
(path)Save the object.
to_dict
()Collect all information about etna object in dict.
Attributes
- fit(ts: etna.datasets.tsdataset.TSDataset) etna.pipeline.hierarchical_pipeline.HierarchicalPipeline [source]¶
Fit the HierarchicalPipeline.
Fit and apply given transforms to the data, then fit the model on the transformed data. Provided hierarchical dataset will be aggregated to the source level before fitting pipeline.
- Parameters
ts (etna.datasets.tsdataset.TSDataset) – Dataset with hierarchical timeseries data
- Returns
Fitted HierarchicalPipeline instance
- Return type
- forecast(prediction_interval: bool = False, quantiles: Sequence[float] = (0.025, 0.975), n_folds: int = 3) etna.datasets.tsdataset.TSDataset [source]¶
Make a prediction for target at the source level of hierarchy and make reconciliation to target level.
- Parameters
prediction_interval (bool) – If True returns prediction interval for forecast
quantiles (Sequence[float]) – Levels of prediction distribution. By default 2.5% and 97.5% taken to form a 95% prediction interval
n_folds (int) – Number of folds to use in the backtest for prediction interval estimation
- Returns
Dataset with predictions at the target level of hierarchy.
- Return type
- raw_forecast(prediction_interval: bool = False, quantiles: Sequence[float] = (0.25, 0.75), n_folds: int = 3) etna.datasets.tsdataset.TSDataset [source]¶
Make a prediction for target at the source level of hierarchy.
- Parameters
prediction_interval (bool) – If True returns prediction interval for forecast
quantiles (Sequence[float]) – Levels of prediction distribution. By default 2.5% and 97.5% taken to form a 95% prediction interval
n_folds (int) – Number of folds to use in the backtest for prediction interval estimation
- Returns
Dataset with predictions at the source level
- Return type