_OneSegmentChangePointsTrendTransform¶
- class _OneSegmentChangePointsTrendTransform(in_column: str, change_point_model: ruptures.base.BaseEstimator, detrend_model: Type[sklearn.base.RegressorMixin], **change_point_model_predict_params)[source]¶
Bases:
etna.transforms.base.Transform_OneSegmentChangePointsTransform subtracts multiple linear trend from series.
Init _OneSegmentChangePointsTrendTransform.
- Parameters
in_column (str) – name of column to apply transform to
change_point_model (ruptures.base.BaseEstimator) – model to get trend change points TODO: replace this parameters with the instance of BaseChangePointsModelAdapter in ETNA 2.0
detrend_model (Type[sklearn.base.RegressorMixin]) – model to get trend in data
change_point_model_predict_params – params for
change_point_model.predictmethod
- Inherited-members
Methods
fit(df)Fit OneSegmentChangePointsTransform: find trend change points in
df, fit detrend models with data from intervals of stable trend.fit_transform(df)May be reimplemented.
Split df to intervals of stable trend according to previous change point detection and add trend to each one.
load(path)Load an object.
save(path)Save the object.
to_dict()Collect all information about etna object in dict.
transform(df)Split df to intervals of stable trend and subtract trend from each one.
- fit(df: pandas.core.frame.DataFrame) etna.transforms.decomposition.change_points_trend._OneSegmentChangePointsTrendTransform[source]¶
Fit OneSegmentChangePointsTransform: find trend change points in
df, fit detrend models with data from intervals of stable trend.- Parameters
df (pandas.core.frame.DataFrame) – one segment dataframe indexed with timestamp
- Return type
etna.transforms.decomposition.change_points_trend._OneSegmentChangePointsTrendTransform
- inverse_transform(df: pandas.core.frame.DataFrame) pandas.core.frame.DataFrame[source]¶
Split df to intervals of stable trend according to previous change point detection and add trend to each one.
- Parameters
df (pandas.core.frame.DataFrame) – one segment dataframe to turn trend back
- Returns
df – df with restored trend in in_column
- Return type
pd.DataFrame
- transform(df: pandas.core.frame.DataFrame) pandas.core.frame.DataFrame[source]¶
Split df to intervals of stable trend and subtract trend from each one.
- Parameters
df (pandas.core.frame.DataFrame) – one segment dataframe to subtract trend
- Returns
detrended df – df with detrended in_column series
- Return type
pd.DataFrame