_TrendTransform¶
- class _TrendTransform(in_column: str, out_column: str, change_point_model: ruptures.base.BaseEstimator, detrend_model: Type[sklearn.base.RegressorMixin], **change_point_model_predict_params)[source]¶
Bases:
etna.transforms.base.PerSegmentWrapper_TrendTransform adds trend as a feature. Creates column ‘<in_column>_trend’.
Init _TrendTransform.
- Parameters
in_column (str) – name of column to apply transform to
out_column (str) – name of added column
change_point_model (ruptures.base.BaseEstimator) – model to get trend change points
detrend_model (Type[sklearn.base.RegressorMixin]) – model to get trend in data
change_point_model_predict_params – params for
change_point_model.predictmethod
- Inherited-members
Methods
fit(df)Fit transform on each segment.
fit_transform(df)May be reimplemented.
inverse_transform(df)Apply inverse_transform to each segment.
load(path)Load an object.
save(path)Save the object.
to_dict()Collect all information about etna object in dict.
transform(df)Apply transform to each segment separately.