etna.transforms.FourierTransform#
- class FourierTransform(period: float, order: int | None = None, mods: Sequence[int] | None = None, out_column: str | None = None)[source]#
Bases:
IrreversibleTransform,FutureMixinAdds fourier features to the dataset.
Notes
To understand how transform works we recommend: Fourier series.
Parameter
periodis responsible for the seasonality we want to capture.Parameters
orderandmodsdefine which harmonics will be used.
Parameter
orderis a more user-friendly version ofmods. For example,order=2can be represented asmods=[1, 2, 3, 4]ifperiod> 4 and asmods=[1, 2, 3]if 3 <=period<= 4.Create instance of FourierTransform.
- Parameters:
period (float) –
the period of the seasonality to capture in frequency units of time series;
periodshould be >= 2order (int | None) –
upper order of Fourier components to include;
ordershould be >= 1 and <= ceil(period/2))alternative and precise way of defining which harmonics will be used, for example
mods=[1, 3, 4]means that sin of the first order and sin and cos of the second order will be used;modsshould be >= 1 and < periodout_column (str | None) –
if set, name of added column, the final name will be ‘{out_columnt}_{mod}’;
if don’t set, name will be
transform.__repr__(), repr will be made for transform that creates exactly this column
- Raises:
ValueError: – if period < 2
ValueError: – if both or none of order, mods is set
ValueError: – if order is < 1 or > ceil(period/2)
ValueError: – if at least one mod is < 1 or >= period
Methods
fit(ts)Fit the transform.
fit_transform(ts)Fit and transform TSDataset.
Return the list with regressors created by the transform.
Inverse transform TSDataset.
load(path)Load an object.
Get default grid for tuning hyperparameters.
save(path)Save the object.
set_params(**params)Return new object instance with modified parameters.
to_dict()Collect all information about etna object in dict.
transform(ts)Transform TSDataset inplace.
Attributes
This class stores its
__init__parameters as attributes.- fit(ts: TSDataset) Transform[source]#
Fit the transform.
- Parameters:
ts (TSDataset) – Dataset to fit the transform on.
- Returns:
The fitted transform instance.
- Return type:
Transform
- fit_transform(ts: TSDataset) TSDataset[source]#
Fit and transform TSDataset.
May be reimplemented. But it is not recommended.
- classmethod load(path: Path) Self[source]#
Load an object.
Warning
This method uses
dillmodule which is not secure. It is possible to construct malicious data which will execute arbitrary code during loading. Never load data that could have come from an untrusted source, or that could have been tampered with.- Parameters:
path (Path) – Path to load object from.
- Returns:
Loaded object.
- Return type:
Self
- params_to_tune() Dict[str, BaseDistribution][source]#
Get default grid for tuning hyperparameters.
If
self.orderis set then this grid tunesorderparameter: Other parameters are expected to be set by the user.- Returns:
Grid to tune.
- Return type:
- set_params(**params: dict) Self[source]#
Return new object instance with modified parameters.
Method also allows to change parameters of nested objects within the current object. For example, it is possible to change parameters of a
modelin aPipeline.Nested parameters are expected to be in a
<component_1>.<...>.<parameter>form, where components are separated by a dot.- Parameters:
**params (dict) – Estimator parameters
- Returns:
New instance with changed parameters
- Return type:
Self
Examples
>>> from etna.pipeline import Pipeline >>> from etna.models import NaiveModel >>> from etna.transforms import AddConstTransform >>> model = model=NaiveModel(lag=1) >>> transforms = [AddConstTransform(in_column="target", value=1)] >>> pipeline = Pipeline(model, transforms=transforms, horizon=3) >>> pipeline.set_params(**{"model.lag": 3, "transforms.0.value": 2}) Pipeline(model = NaiveModel(lag = 3, ), transforms = [AddConstTransform(in_column = 'target', value = 2, inplace = True, out_column = None, )], horizon = 3, )