etna.transforms.decomposition.RupturesChangePointsModel#
- class RupturesChangePointsModel(change_points_model: BaseEstimator, **change_points_model_predict_params)[source]#
- Bases: - BaseChangePointsModelAdapter- RupturesChangePointsModel is ruptures change point models adapter. - Init RupturesChangePointsModel. - Parameters:
- change_points_model (BaseEstimator) – model to get change points 
- change_point_model_predict_params – params for - change_point_model.predictmethod
 
 - Methods - get_change_points(df, in_column)- Find change points within one segment. - get_change_points_intervals(df, in_column)- Find change point intervals in given dataframe and column. - set_params(**params)- Return new object instance with modified parameters. - to_dict()- Collect all information about etna object in dict. - Attributes - This class stores its - __init__parameters as attributes.- get_change_points(df: DataFrame, in_column: str) List[Timestamp][source]#
- Find change points within one segment. 
 - get_change_points_intervals(df: DataFrame, in_column: str) List[Tuple[Timestamp, Timestamp]][source]#
- Find change point intervals in given dataframe and column. 
 - set_params(**params: dict) Self[source]#
- Return new object instance with modified parameters. - Method also allows to change parameters of nested objects within the current object. For example, it is possible to change parameters of a - modelin a- Pipeline.- Nested parameters are expected to be in a - <component_1>.<...>.<parameter>form, where components are separated by a dot.- Parameters:
- **params (dict) – Estimator parameters 
- Returns:
- New instance with changed parameters 
- Return type:
- Self 
 - Examples - >>> from etna.pipeline import Pipeline >>> from etna.models import NaiveModel >>> from etna.transforms import AddConstTransform >>> model = model=NaiveModel(lag=1) >>> transforms = [AddConstTransform(in_column="target", value=1)] >>> pipeline = Pipeline(model, transforms=transforms, horizon=3) >>> pipeline.set_params(**{"model.lag": 3, "transforms.0.value": 2}) Pipeline(model = NaiveModel(lag = 3, ), transforms = [AddConstTransform(in_column = 'target', value = 2, inplace = True, out_column = None, )], horizon = 3, )