etna.transforms.DateFlagsTransform#
- class DateFlagsTransform(day_number_in_week: bool | None = True, day_number_in_month: bool | None = True, day_number_in_year: bool | None = False, week_number_in_month: bool | None = False, week_number_in_year: bool | None = False, month_number_in_year: bool | None = False, season_number: bool | None = False, year_number: bool | None = False, is_weekend: bool | None = True, special_days_in_week: Sequence[int] = (), special_days_in_month: Sequence[int] = (), out_column: str | None = None, in_column: str | None = None)[source]#
- Bases: - IrreversibleTransform- DateFlagsTransform is a class that implements extraction of the main date-based features from datetime column. - Notes - Small example of - week_number_in_monthand- week_number_in_yearfeatures- timestamp - day_number_in_week - week_number_in_month - week_number_in_year - 2020-01-01 - 4 - 1 - 53 - 2020-01-02 - 5 - 1 - 53 - 2020-01-03 - 6 - 1 - 53 - 2020-01-04 - 0 - 2 - 1 - … - 2020-01-10 - 6 - 2 - 1 - 2020-01-11 - 0 - 3 - 2 - Create instance of DateFlags. - Parameters:
- day_number_in_week (bool | None) – if True, add column with weekday info to feature dataframe in transform 
- day_number_in_month (bool | None) – if True, add column with day info to feature dataframe in transform 
- day_number_in_year (bool | None) – if True, add column with number of day in a year with leap year numeration (values from 1 to 366) 
- week_number_in_month (bool | None) – if True, add column with week number (in month context) to feature dataframe in transform 
- week_number_in_year (bool | None) – if True, add column with week number (in year context) to feature dataframe in transform 
- month_number_in_year (bool | None) – if True, add column with month info to feature dataframe in transform 
- season_number (bool | None) – if True, add column with season info to feature dataframe in transform 
- year_number (bool | None) – if True, add column with year info to feature dataframe in transform 
- is_weekend (bool | None) – if True: add column with weekends flags to feature dataframe in transform 
- special_days_in_week (Sequence[int]) – list of weekdays number (from [0, 6]) that should be interpreted as special ones, if given add column with flag that shows given date is a special day 
- special_days_in_month (Sequence[int]) – list of days number (from [1, 31]) that should be interpreted as special ones, if given add column with flag that shows given date is a special day 
- out_column (str | None) – - base for the name of created columns; - if set the final name is ‘{out_column}_{feature_name}’; 
- if don’t set, name will be - transform.__repr__(), repr will be made for transform that creates exactly this column
 
- in_column (str | None) – name of column to work with; if not given, index is used, only datetime index is supported 
 
- Raises:
- ValueError: – if all features aren’t set in transform 
 - Methods - fit(ts)- Fit the transform. - fit_transform(ts)- Fit and transform TSDataset. - Return the list with regressors created by the transform. - Inverse transform TSDataset. - load(path)- Load an object. - Get default grid for tuning hyperparameters. - save(path)- Save the object. - set_params(**params)- Return new object instance with modified parameters. - to_dict()- Collect all information about etna object in dict. - transform(ts)- Transform TSDataset inplace. - Attributes - This class stores its - __init__parameters as attributes.- fit(ts: TSDataset) DateFlagsTransform[source]#
- Fit the transform. - Parameters:
- ts (TSDataset) – 
- Return type:
 
 - fit_transform(ts: TSDataset) TSDataset[source]#
- Fit and transform TSDataset. - May be reimplemented. But it is not recommended. 
 - classmethod load(path: Path) Self[source]#
- Load an object. - Warning - This method uses - dillmodule which is not secure. It is possible to construct malicious data which will execute arbitrary code during loading. Never load data that could have come from an untrusted source, or that could have been tampered with.- Parameters:
- path (Path) – Path to load object from. 
- Returns:
- Loaded object. 
- Return type:
- Self 
 
 - params_to_tune() Dict[str, BaseDistribution][source]#
- Get default grid for tuning hyperparameters. - This grid tunes parameters: - day_number_in_week,- day_number_in_month,- day_number_in_year,- week_number_in_month,- week_number_in_year,- month_number_in_year,- season_number,- year_number,- is_weekend. Other parameters are expected to be set by the user.- There are no restrictions on all - Falsevalues for the flags.- Returns:
- Grid to tune. 
- Return type:
 
 - set_params(**params: dict) Self[source]#
- Return new object instance with modified parameters. - Method also allows to change parameters of nested objects within the current object. For example, it is possible to change parameters of a - modelin a- Pipeline.- Nested parameters are expected to be in a - <component_1>.<...>.<parameter>form, where components are separated by a dot.- Parameters:
- **params (dict) – Estimator parameters 
- Returns:
- New instance with changed parameters 
- Return type:
- Self 
 - Examples - >>> from etna.pipeline import Pipeline >>> from etna.models import NaiveModel >>> from etna.transforms import AddConstTransform >>> model = model=NaiveModel(lag=1) >>> transforms = [AddConstTransform(in_column="target", value=1)] >>> pipeline = Pipeline(model, transforms=transforms, horizon=3) >>> pipeline.set_params(**{"model.lag": 3, "transforms.0.value": 2}) Pipeline(model = NaiveModel(lag = 3, ), transforms = [AddConstTransform(in_column = 'target', value = 2, inplace = True, out_column = None, )], horizon = 3, )