etna.transforms.EmbeddingWindowTransform#
- class EmbeddingWindowTransform(in_columns: List[str], embedding_model: BaseEmbeddingModel, encoding_params: Dict[str, Any] | None = None, training_params: Dict[str, Any] | None = None, out_column: str = 'embedding_window')[source]#
Bases:
IrreversibleTransformCreate the embedding features for each timestamp using embedding model.
Init EmbeddingWindowTransform.
- Parameters:
in_columns (List[str]) – Columns to use for creating embeddings
embedding_model (BaseEmbeddingModel) – Model to create the embeddings
encoding_params (Dict[str, Any] | None) – Parameters to use during encoding. Parameters for corresponding models can be found at embedding section.
training_params (Dict[str, Any] | None) – Parameters to use during training. Parameters for corresponding models can be found at embedding section.
out_column (str) – Prefix for output columns, the output columns format is ‘{out_column}_{i}’
Methods
fit(ts)Fit the transform.
fit_transform(ts)Fit and transform TSDataset.
Return the list with regressors created by the transform.
Inverse transform TSDataset.
load(path)Load an object.
Get grid for tuning hyperparameters.
save(path)Save the object.
set_params(**params)Return new object instance with modified parameters.
to_dict()Collect all information about etna object in dict.
transform(ts)Transform TSDataset inplace.
Attributes
This class stores its
__init__parameters as attributes.- fit(ts: TSDataset) Transform[source]#
Fit the transform.
- Parameters:
ts (TSDataset) – Dataset to fit the transform on.
- Returns:
The fitted transform instance.
- Return type:
Transform
- fit_transform(ts: TSDataset) TSDataset[source]#
Fit and transform TSDataset.
May be reimplemented. But it is not recommended.
- classmethod load(path: Path) EmbeddingWindowTransform[source]#
Load an object.
- Parameters:
path (Path) – Path to load object from.
- Returns:
Loaded object.
- Return type:
- params_to_tune() Dict[str, BaseDistribution][source]#
Get grid for tuning hyperparameters.
This is default implementation with empty grid.
- Returns:
Empty grid.
- Return type:
- set_params(**params: dict) Self[source]#
Return new object instance with modified parameters.
Method also allows to change parameters of nested objects within the current object. For example, it is possible to change parameters of a
modelin aPipeline.Nested parameters are expected to be in a
<component_1>.<...>.<parameter>form, where components are separated by a dot.- Parameters:
**params (dict) – Estimator parameters
- Returns:
New instance with changed parameters
- Return type:
Self
Examples
>>> from etna.pipeline import Pipeline >>> from etna.models import NaiveModel >>> from etna.transforms import AddConstTransform >>> model = model=NaiveModel(lag=1) >>> transforms = [AddConstTransform(in_column="target", value=1)] >>> pipeline = Pipeline(model, transforms=transforms, horizon=3) >>> pipeline.set_params(**{"model.lag": 3, "transforms.0.value": 2}) Pipeline(model = NaiveModel(lag = 3, ), transforms = [AddConstTransform(in_column = 'target', value = 2, inplace = True, out_column = None, )], horizon = 3, )