View Jupyter notebook on the GitHub.
Deep learning examples#
This notebooks contains examples with neural network models.
Table of contents
Loading dataset
Testing models
Baseline
DeepAR
TFT
RNN
MLP
Deep State Model
N-BEATS Model
PatchTST Model
Chronos Model
Chronos Bolt Model
TimesFM Model
[1]:
!pip install "etna[torch,chronos,timesfm]" -q
[2]:
import warnings
warnings.filterwarnings("ignore")
[3]:
import random
import numpy as np
import pandas as pd
import torch
from etna.analysis import plot_backtest
from etna.datasets.tsdataset import TSDataset
from etna.metrics import MAE
from etna.metrics import MAPE
from etna.metrics import SMAPE
from etna.models import SeasonalMovingAverageModel
from etna.pipeline import Pipeline
from etna.transforms import DateFlagsTransform
from etna.transforms import LabelEncoderTransform
from etna.transforms import LagTransform
from etna.transforms import LinearTrendTransform
from etna.transforms import SegmentEncoderTransform
from etna.transforms import StandardScalerTransform
[4]:
def set_seed(seed: int = 42):
"""Set random seed for reproducibility."""
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
Let’s fix seeds for reproducibility.
[5]:
set_seed()
1. Loading dataset#
We are going to take some toy dataset. Let’s load and look at it.
[6]:
df = pd.read_csv("data/example_dataset.csv")
df.head()
[6]:
timestamp | segment | target | |
---|---|---|---|
0 | 2019-01-01 | segment_a | 170 |
1 | 2019-01-02 | segment_a | 243 |
2 | 2019-01-03 | segment_a | 267 |
3 | 2019-01-04 | segment_a | 287 |
4 | 2019-01-05 | segment_a | 279 |
Our library works with the special data structure TSDataset
. Let’s create it as it was done in “Get started” notebook.
[7]:
ts = TSDataset(df, freq="D")
ts.head(5)
[7]:
segment | segment_a | segment_b | segment_c | segment_d |
---|---|---|---|---|
feature | target | target | target | target |
timestamp | ||||
2019-01-01 | 170 | 102 | 92 | 238 |
2019-01-02 | 243 | 123 | 107 | 358 |
2019-01-03 | 267 | 130 | 103 | 366 |
2019-01-04 | 287 | 138 | 103 | 385 |
2019-01-05 | 279 | 137 | 104 | 384 |
2. Testing models#
In this section we will test our models on example.
[8]:
HORIZON = 7
metrics = [SMAPE(), MAPE(), MAE()]
2.1 Baseline#
For comparison let’s train some simple model as a baseline.
[9]:
model_sma = SeasonalMovingAverageModel(window=5, seasonality=7)
linear_trend_transform = LinearTrendTransform(in_column="target")
pipeline_sma = Pipeline(model=model_sma, horizon=HORIZON, transforms=[linear_trend_transform])
[10]:
metrics_sma, forecast_sma, fold_info_sma = pipeline_sma.backtest(ts, metrics=metrics, n_folds=3, n_jobs=1)
[Parallel(n_jobs=1)]: Done 1 tasks | elapsed: 0.0s
[Parallel(n_jobs=1)]: Done 2 tasks | elapsed: 0.0s
[Parallel(n_jobs=1)]: Done 3 tasks | elapsed: 0.0s
[Parallel(n_jobs=1)]: Done 3 tasks | elapsed: 0.0s
[Parallel(n_jobs=1)]: Done 1 tasks | elapsed: 0.0s
[Parallel(n_jobs=1)]: Done 2 tasks | elapsed: 0.0s
[Parallel(n_jobs=1)]: Done 3 tasks | elapsed: 0.1s
[Parallel(n_jobs=1)]: Done 3 tasks | elapsed: 0.1s
[Parallel(n_jobs=1)]: Done 1 tasks | elapsed: 0.0s
[Parallel(n_jobs=1)]: Done 2 tasks | elapsed: 0.0s
[Parallel(n_jobs=1)]: Done 3 tasks | elapsed: 0.0s
[Parallel(n_jobs=1)]: Done 3 tasks | elapsed: 0.0s
[11]:
metrics_sma
[11]:
segment | SMAPE | MAPE | MAE | fold_number | |
---|---|---|---|---|---|
0 | segment_a | 6.343943 | 6.124296 | 33.196532 | 0 |
0 | segment_a | 5.346946 | 5.192455 | 27.938101 | 1 |
0 | segment_a | 7.510347 | 7.189999 | 40.028565 | 2 |
1 | segment_b | 7.178822 | 6.920176 | 17.818102 | 0 |
1 | segment_b | 5.672504 | 5.554555 | 13.719200 | 1 |
1 | segment_b | 3.327846 | 3.359712 | 7.680919 | 2 |
2 | segment_c | 6.430429 | 6.200580 | 10.877718 | 0 |
2 | segment_c | 5.947090 | 5.727531 | 10.701336 | 1 |
2 | segment_c | 6.186545 | 5.943679 | 11.359563 | 2 |
3 | segment_d | 4.707899 | 4.644170 | 39.918646 | 0 |
3 | segment_d | 5.403426 | 5.600978 | 43.047332 | 1 |
3 | segment_d | 2.505279 | 2.543719 | 19.347565 | 2 |
[12]:
score = metrics_sma["SMAPE"].mean()
print(f"Average SMAPE for Seasonal MA: {score:.3f}")
Average SMAPE for Seasonal MA: 5.547
[13]:
plot_backtest(forecast_sma, ts, history_len=20)

2.2 DeepAR#
Note that the original DeepARModel
was removed in version 3.0
. DeepARNativeModel
to renamed to DeepARModel
.
[14]:
from etna.models.nn import DeepARModel
[15]:
num_lags = 7
scaler = StandardScalerTransform(in_column="target")
transform_date = DateFlagsTransform(
day_number_in_week=True,
day_number_in_month=False,
day_number_in_year=False,
week_number_in_month=False,
week_number_in_year=False,
month_number_in_year=False,
season_number=False,
year_number=False,
is_weekend=False,
out_column="dateflag",
)
transform_lag = LagTransform(
in_column="target",
lags=[HORIZON + i for i in range(num_lags)],
out_column="target_lag",
)
label_encoder = LabelEncoderTransform(
in_column="dateflag_day_number_in_week", strategy="none", out_column="dateflag_day_number_in_week_label"
)
embedding_sizes = {"dateflag_day_number_in_week_label": (7, 7)}
[16]:
set_seed()
model_deepar = DeepARModel(
input_size=num_lags + 1,
encoder_length=2 * HORIZON,
decoder_length=HORIZON,
embedding_sizes=embedding_sizes,
lr=0.01,
scale=False,
n_samples=100,
trainer_params=dict(max_epochs=2),
)
pipeline_deepar = Pipeline(
model=model_deepar,
horizon=HORIZON,
transforms=[scaler, transform_lag, transform_date, label_encoder],
)
[17]:
metrics_deepar, forecast_deepar, fold_info_deepar = pipeline_deepar.backtest(ts, metrics=metrics, n_folds=3, n_jobs=1)
GPU available: True (mps), used: False
TPU available: False, using: 0 TPU cores
HPU available: False, using: 0 HPUs
| Name | Type | Params | Mode
------------------------------------------------------
0 | loss | GaussianLoss | 0 | train
1 | embedding | MultiEmbedding | 56 | train
2 | rnn | LSTM | 4.3 K | train
3 | projection | ModuleDict | 34 | train
------------------------------------------------------
4.4 K Trainable params
0 Non-trainable params
4.4 K Total params
0.018 Total estimated model params size (MB)
11 Modules in train mode
0 Modules in eval mode
`Trainer.fit` stopped: `max_epochs=2` reached.
[Parallel(n_jobs=1)]: Done 1 tasks | elapsed: 1.0s
GPU available: True (mps), used: False
TPU available: False, using: 0 TPU cores
HPU available: False, using: 0 HPUs
| Name | Type | Params | Mode
------------------------------------------------------
0 | loss | GaussianLoss | 0 | train
1 | embedding | MultiEmbedding | 56 | train
2 | rnn | LSTM | 4.3 K | train
3 | projection | ModuleDict | 34 | train
------------------------------------------------------
4.4 K Trainable params
0 Non-trainable params
4.4 K Total params
0.018 Total estimated model params size (MB)
11 Modules in train mode
0 Modules in eval mode
`Trainer.fit` stopped: `max_epochs=2` reached.
[Parallel(n_jobs=1)]: Done 2 tasks | elapsed: 1.9s
GPU available: True (mps), used: False
TPU available: False, using: 0 TPU cores
HPU available: False, using: 0 HPUs
| Name | Type | Params | Mode
------------------------------------------------------
0 | loss | GaussianLoss | 0 | train
1 | embedding | MultiEmbedding | 56 | train
2 | rnn | LSTM | 4.3 K | train
3 | projection | ModuleDict | 34 | train
------------------------------------------------------
4.4 K Trainable params
0 Non-trainable params
4.4 K Total params
0.018 Total estimated model params size (MB)
11 Modules in train mode
0 Modules in eval mode
`Trainer.fit` stopped: `max_epochs=2` reached.
[Parallel(n_jobs=1)]: Done 3 tasks | elapsed: 2.7s
[Parallel(n_jobs=1)]: Done 3 tasks | elapsed: 2.7s
[Parallel(n_jobs=1)]: Done 1 tasks | elapsed: 0.2s
[Parallel(n_jobs=1)]: Done 2 tasks | elapsed: 0.3s
[Parallel(n_jobs=1)]: Done 3 tasks | elapsed: 0.5s
[Parallel(n_jobs=1)]: Done 3 tasks | elapsed: 0.5s
[Parallel(n_jobs=1)]: Done 1 tasks | elapsed: 0.0s
[Parallel(n_jobs=1)]: Done 2 tasks | elapsed: 0.0s
[Parallel(n_jobs=1)]: Done 3 tasks | elapsed: 0.0s
[Parallel(n_jobs=1)]: Done 3 tasks | elapsed: 0.0s
[18]:
score = metrics_deepar["SMAPE"].mean()
print(f"Average SMAPE for DeepAR: {score:.3f}")
Average SMAPE for DeepAR: 5.816
[19]:
plot_backtest(forecast_deepar, ts, history_len=20)

2.3 TFT#
Note that the original TFTModel
was removed in version 3.0
. TFTNativeModel
to renamed to TFTModel
.
[20]:
from etna.models.nn import TFTModel
[21]:
num_lags = 7
lag_columns = [f"target_lag_{HORIZON+i}" for i in range(num_lags)]
transform_lag = LagTransform(
in_column="target",
lags=[HORIZON + i for i in range(num_lags)],
out_column="target_lag",
)
transform_date = DateFlagsTransform(
day_number_in_week=True,
day_number_in_month=False,
day_number_in_year=False,
week_number_in_month=False,
week_number_in_year=False,
month_number_in_year=False,
season_number=False,
year_number=False,
is_weekend=False,
out_column="dateflag",
)
scaler = StandardScalerTransform(in_column=["target"])
encoder = SegmentEncoderTransform()
label_encoder = LabelEncoderTransform(
in_column="dateflag_day_number_in_week", strategy="none", out_column="dateflag_day_number_in_week_label"
)
[22]:
set_seed()
model_tft = TFTModel(
encoder_length=2 * HORIZON,
decoder_length=HORIZON,
static_categoricals=["segment_code"],
time_varying_categoricals_encoder=["dateflag_day_number_in_week_label"],
time_varying_categoricals_decoder=["dateflag_day_number_in_week_label"],
time_varying_reals_encoder=["target"] + lag_columns,
time_varying_reals_decoder=lag_columns,
num_embeddings={"segment_code": len(ts.segments), "dateflag_day_number_in_week_label": 7},
n_heads=1,
num_layers=2,
hidden_size=32,
lr=0.0001,
train_batch_size=16,
trainer_params=dict(max_epochs=5, gradient_clip_val=0.1),
)
pipeline_tft = Pipeline(
model=model_tft, horizon=HORIZON, transforms=[transform_lag, scaler, transform_date, encoder, label_encoder]
)
[23]:
metrics_tft, forecast_tft, fold_info_tft = pipeline_tft.backtest(ts, metrics=metrics, n_folds=3, n_jobs=1)
GPU available: True (mps), used: False
TPU available: False, using: 0 TPU cores
HPU available: False, using: 0 HPUs
| Name | Type | Params | Mode
--------------------------------------------------------------------------------------
0 | loss | MSELoss | 0 | train
1 | static_scalers | ModuleDict | 0 | train
2 | static_embeddings | ModuleDict | 160 | train
3 | time_varying_scalers_encoder | ModuleDict | 512 | train
4 | time_varying_embeddings_encoder | ModuleDict | 256 | train
5 | time_varying_scalers_decoder | ModuleDict | 448 | train
6 | time_varying_embeddings_decoder | ModuleDict | 256 | train
7 | static_variable_selection | VariableSelectionNetwork | 6.5 K | train
8 | encoder_variable_selection | VariableSelectionNetwork | 222 K | train
9 | decoder_variable_selection | VariableSelectionNetwork | 180 K | train
10 | static_covariate_encoder | StaticCovariateEncoder | 17.2 K | train
11 | lstm_encoder | LSTM | 16.9 K | train
12 | lstm_decoder | LSTM | 16.9 K | train
13 | gated_norm1 | GateAddNorm | 2.2 K | train
14 | temporal_fusion_decoder | TemporalFusionDecoder | 16.0 K | train
15 | gated_norm2 | GateAddNorm | 2.2 K | train
16 | output_fc | Linear | 33 | train
--------------------------------------------------------------------------------------
481 K Trainable params
0 Non-trainable params
481 K Total params
1.927 Total estimated model params size (MB)
365 Modules in train mode
0 Modules in eval mode
`Trainer.fit` stopped: `max_epochs=5` reached.
[Parallel(n_jobs=1)]: Done 1 tasks | elapsed: 9.2s
GPU available: True (mps), used: False
TPU available: False, using: 0 TPU cores
HPU available: False, using: 0 HPUs
| Name | Type | Params | Mode
--------------------------------------------------------------------------------------
0 | loss | MSELoss | 0 | train
1 | static_scalers | ModuleDict | 0 | train
2 | static_embeddings | ModuleDict | 160 | train
3 | time_varying_scalers_encoder | ModuleDict | 512 | train
4 | time_varying_embeddings_encoder | ModuleDict | 256 | train
5 | time_varying_scalers_decoder | ModuleDict | 448 | train
6 | time_varying_embeddings_decoder | ModuleDict | 256 | train
7 | static_variable_selection | VariableSelectionNetwork | 6.5 K | train
8 | encoder_variable_selection | VariableSelectionNetwork | 222 K | train
9 | decoder_variable_selection | VariableSelectionNetwork | 180 K | train
10 | static_covariate_encoder | StaticCovariateEncoder | 17.2 K | train
11 | lstm_encoder | LSTM | 16.9 K | train
12 | lstm_decoder | LSTM | 16.9 K | train
13 | gated_norm1 | GateAddNorm | 2.2 K | train
14 | temporal_fusion_decoder | TemporalFusionDecoder | 16.0 K | train
15 | gated_norm2 | GateAddNorm | 2.2 K | train
16 | output_fc | Linear | 33 | train
--------------------------------------------------------------------------------------
481 K Trainable params
0 Non-trainable params
481 K Total params
1.927 Total estimated model params size (MB)
365 Modules in train mode
0 Modules in eval mode
`Trainer.fit` stopped: `max_epochs=5` reached.
[Parallel(n_jobs=1)]: Done 2 tasks | elapsed: 19.8s
GPU available: True (mps), used: False
TPU available: False, using: 0 TPU cores
HPU available: False, using: 0 HPUs
| Name | Type | Params | Mode
--------------------------------------------------------------------------------------
0 | loss | MSELoss | 0 | train
1 | static_scalers | ModuleDict | 0 | train
2 | static_embeddings | ModuleDict | 160 | train
3 | time_varying_scalers_encoder | ModuleDict | 512 | train
4 | time_varying_embeddings_encoder | ModuleDict | 256 | train
5 | time_varying_scalers_decoder | ModuleDict | 448 | train
6 | time_varying_embeddings_decoder | ModuleDict | 256 | train
7 | static_variable_selection | VariableSelectionNetwork | 6.5 K | train
8 | encoder_variable_selection | VariableSelectionNetwork | 222 K | train
9 | decoder_variable_selection | VariableSelectionNetwork | 180 K | train
10 | static_covariate_encoder | StaticCovariateEncoder | 17.2 K | train
11 | lstm_encoder | LSTM | 16.9 K | train
12 | lstm_decoder | LSTM | 16.9 K | train
13 | gated_norm1 | GateAddNorm | 2.2 K | train
14 | temporal_fusion_decoder | TemporalFusionDecoder | 16.0 K | train
15 | gated_norm2 | GateAddNorm | 2.2 K | train
16 | output_fc | Linear | 33 | train
--------------------------------------------------------------------------------------
481 K Trainable params
0 Non-trainable params
481 K Total params
1.927 Total estimated model params size (MB)
365 Modules in train mode
0 Modules in eval mode
`Trainer.fit` stopped: `max_epochs=5` reached.
[Parallel(n_jobs=1)]: Done 3 tasks | elapsed: 29.9s
[Parallel(n_jobs=1)]: Done 3 tasks | elapsed: 29.9s
[Parallel(n_jobs=1)]: Done 1 tasks | elapsed: 0.1s
[Parallel(n_jobs=1)]: Done 2 tasks | elapsed: 0.1s
[Parallel(n_jobs=1)]: Done 3 tasks | elapsed: 0.2s
[Parallel(n_jobs=1)]: Done 3 tasks | elapsed: 0.2s
[Parallel(n_jobs=1)]: Done 1 tasks | elapsed: 0.0s
[Parallel(n_jobs=1)]: Done 2 tasks | elapsed: 0.0s
[Parallel(n_jobs=1)]: Done 3 tasks | elapsed: 0.0s
[Parallel(n_jobs=1)]: Done 3 tasks | elapsed: 0.0s
[24]:
score = metrics_tft["SMAPE"].mean()
print(f"Average SMAPE for TFT: {score:.3f}")
Average SMAPE for TFT: 7.013
[25]:
plot_backtest(forecast_tft, ts, history_len=20)

2.4 RNN#
We’ll use RNN model based on LSTM cell
[26]:
from etna.models.nn import RNNModel
[27]:
num_lags = 7
scaler = StandardScalerTransform(in_column="target")
transform_lag = LagTransform(
in_column="target",
lags=[HORIZON + i for i in range(num_lags)],
out_column="target_lag",
)
transform_date = DateFlagsTransform(
day_number_in_week=True,
day_number_in_month=False,
day_number_in_year=False,
week_number_in_month=False,
week_number_in_year=False,
month_number_in_year=False,
season_number=False,
year_number=False,
is_weekend=False,
out_column="dateflag",
)
segment_encoder = SegmentEncoderTransform()
label_encoder = LabelEncoderTransform(
in_column="dateflag_day_number_in_week", strategy="none", out_column="dateflag_day_number_in_week_label"
)
embedding_sizes = {"dateflag_day_number_in_week_label": (7, 7)}
[28]:
set_seed()
model_rnn = RNNModel(
input_size=num_lags + 1,
encoder_length=2 * HORIZON,
decoder_length=HORIZON,
embedding_sizes=embedding_sizes,
trainer_params=dict(max_epochs=5),
lr=1e-3,
)
pipeline_rnn = Pipeline(
model=model_rnn,
horizon=HORIZON,
transforms=[scaler, transform_lag, transform_date, label_encoder],
)
[29]:
metrics_rnn, forecast_rnn, fold_info_rnn = pipeline_rnn.backtest(ts, metrics=metrics, n_folds=3, n_jobs=1)
GPU available: True (mps), used: False
TPU available: False, using: 0 TPU cores
HPU available: False, using: 0 HPUs
| Name | Type | Params | Mode
------------------------------------------------------
0 | loss | MSELoss | 0 | train
1 | embedding | MultiEmbedding | 56 | train
2 | rnn | LSTM | 4.3 K | train
3 | projection | Linear | 17 | train
------------------------------------------------------
4.4 K Trainable params
0 Non-trainable params
4.4 K Total params
0.017 Total estimated model params size (MB)
6 Modules in train mode
0 Modules in eval mode
`Trainer.fit` stopped: `max_epochs=5` reached.
[Parallel(n_jobs=1)]: Done 1 tasks | elapsed: 1.8s
GPU available: True (mps), used: False
TPU available: False, using: 0 TPU cores
HPU available: False, using: 0 HPUs
| Name | Type | Params | Mode
------------------------------------------------------
0 | loss | MSELoss | 0 | train
1 | embedding | MultiEmbedding | 56 | train
2 | rnn | LSTM | 4.3 K | train
3 | projection | Linear | 17 | train
------------------------------------------------------
4.4 K Trainable params
0 Non-trainable params
4.4 K Total params
0.017 Total estimated model params size (MB)
6 Modules in train mode
0 Modules in eval mode
`Trainer.fit` stopped: `max_epochs=5` reached.
[Parallel(n_jobs=1)]: Done 2 tasks | elapsed: 3.8s
GPU available: True (mps), used: False
TPU available: False, using: 0 TPU cores
HPU available: False, using: 0 HPUs
| Name | Type | Params | Mode
------------------------------------------------------
0 | loss | MSELoss | 0 | train
1 | embedding | MultiEmbedding | 56 | train
2 | rnn | LSTM | 4.3 K | train
3 | projection | Linear | 17 | train
------------------------------------------------------
4.4 K Trainable params
0 Non-trainable params
4.4 K Total params
0.017 Total estimated model params size (MB)
6 Modules in train mode
0 Modules in eval mode
`Trainer.fit` stopped: `max_epochs=5` reached.
[Parallel(n_jobs=1)]: Done 3 tasks | elapsed: 5.8s
[Parallel(n_jobs=1)]: Done 3 tasks | elapsed: 5.8s
[Parallel(n_jobs=1)]: Done 1 tasks | elapsed: 0.1s
[Parallel(n_jobs=1)]: Done 2 tasks | elapsed: 0.1s
[Parallel(n_jobs=1)]: Done 3 tasks | elapsed: 0.1s
[Parallel(n_jobs=1)]: Done 3 tasks | elapsed: 0.1s
[Parallel(n_jobs=1)]: Done 1 tasks | elapsed: 0.0s
[Parallel(n_jobs=1)]: Done 2 tasks | elapsed: 0.0s
[Parallel(n_jobs=1)]: Done 3 tasks | elapsed: 0.0s
[Parallel(n_jobs=1)]: Done 3 tasks | elapsed: 0.0s
[30]:
score = metrics_rnn["SMAPE"].mean()
print(f"Average SMAPE for LSTM: {score:.3f}")
Average SMAPE for LSTM: 5.653
[31]:
plot_backtest(forecast_rnn, ts, history_len=20)

2.5 MLP#
Base model with linear layers and activations.
[32]:
from etna.models.nn import MLPModel
[33]:
num_lags = 14
transform_lag = LagTransform(
in_column="target",
lags=[HORIZON + i for i in range(num_lags)],
out_column="target_lag",
)
transform_date = DateFlagsTransform(
day_number_in_week=True,
day_number_in_month=False,
day_number_in_year=False,
week_number_in_month=False,
week_number_in_year=False,
month_number_in_year=False,
season_number=False,
year_number=False,
is_weekend=False,
out_column="dateflag",
)
segment_encoder = SegmentEncoderTransform()
label_encoder = LabelEncoderTransform(
in_column="dateflag_day_number_in_week", strategy="none", out_column="dateflag_day_number_in_week_label"
)
embedding_sizes = {"dateflag_day_number_in_week_label": (7, 7)}
[34]:
set_seed()
model_mlp = MLPModel(
input_size=num_lags,
hidden_size=[16],
embedding_sizes=embedding_sizes,
decoder_length=HORIZON,
trainer_params=dict(max_epochs=50, gradient_clip_val=0.1),
lr=0.001,
train_batch_size=16,
)
metrics = [SMAPE(), MAPE(), MAE()]
pipeline_mlp = Pipeline(model=model_mlp, transforms=[transform_lag, transform_date, label_encoder], horizon=HORIZON)
[35]:
metrics_mlp, forecast_mlp, fold_info_mlp = pipeline_mlp.backtest(ts, metrics=metrics, n_folds=3, n_jobs=1)
GPU available: True (mps), used: False
TPU available: False, using: 0 TPU cores
HPU available: False, using: 0 HPUs
| Name | Type | Params | Mode
-----------------------------------------------------
0 | loss | MSELoss | 0 | train
1 | embedding | MultiEmbedding | 56 | train
2 | mlp | Sequential | 369 | train
-----------------------------------------------------
425 Trainable params
0 Non-trainable params
425 Total params
0.002 Total estimated model params size (MB)
8 Modules in train mode
0 Modules in eval mode
`Trainer.fit` stopped: `max_epochs=50` reached.
[Parallel(n_jobs=1)]: Done 1 tasks | elapsed: 1.4s
GPU available: True (mps), used: False
TPU available: False, using: 0 TPU cores
HPU available: False, using: 0 HPUs
| Name | Type | Params | Mode
-----------------------------------------------------
0 | loss | MSELoss | 0 | train
1 | embedding | MultiEmbedding | 56 | train
2 | mlp | Sequential | 369 | train
-----------------------------------------------------
425 Trainable params
0 Non-trainable params
425 Total params
0.002 Total estimated model params size (MB)
8 Modules in train mode
0 Modules in eval mode
`Trainer.fit` stopped: `max_epochs=50` reached.
[Parallel(n_jobs=1)]: Done 2 tasks | elapsed: 2.7s
GPU available: True (mps), used: False
TPU available: False, using: 0 TPU cores
HPU available: False, using: 0 HPUs
| Name | Type | Params | Mode
-----------------------------------------------------
0 | loss | MSELoss | 0 | train
1 | embedding | MultiEmbedding | 56 | train
2 | mlp | Sequential | 369 | train
-----------------------------------------------------
425 Trainable params
0 Non-trainable params
425 Total params
0.002 Total estimated model params size (MB)
8 Modules in train mode
0 Modules in eval mode
`Trainer.fit` stopped: `max_epochs=50` reached.
[Parallel(n_jobs=1)]: Done 3 tasks | elapsed: 4.1s
[Parallel(n_jobs=1)]: Done 3 tasks | elapsed: 4.1s
[Parallel(n_jobs=1)]: Done 1 tasks | elapsed: 0.0s
[Parallel(n_jobs=1)]: Done 2 tasks | elapsed: 0.1s
[Parallel(n_jobs=1)]: Done 3 tasks | elapsed: 0.1s
[Parallel(n_jobs=1)]: Done 3 tasks | elapsed: 0.1s
[Parallel(n_jobs=1)]: Done 1 tasks | elapsed: 0.0s
[Parallel(n_jobs=1)]: Done 2 tasks | elapsed: 0.0s
[Parallel(n_jobs=1)]: Done 3 tasks | elapsed: 0.0s
[Parallel(n_jobs=1)]: Done 3 tasks | elapsed: 0.0s
[36]:
score = metrics_mlp["SMAPE"].mean()
print(f"Average SMAPE for MLP: {score:.3f}")
Average SMAPE for MLP: 5.861
[37]:
plot_backtest(forecast_mlp, ts, history_len=20)

2.6 Deep State Model#
Deep State Model
works well with multiple similar time-series. It inffers shared patterns from them.
We have to determine the type of seasonality in data (based on data granularity), SeasonalitySSM
class is responsible for this. In this example, we have daily data, so we use day-of-week (7 seasons) and day-of-month (31 seasons) models. We also set the trend component using the LevelTrendSSM
class. Also in the model we use time-based features like day-of-week, day-of-month and time independent feature representing the segment of time series.
[38]:
from etna.models.nn import DeepStateModel
from etna.models.nn.deepstate import CompositeSSM
from etna.models.nn.deepstate import LevelTrendSSM
from etna.models.nn.deepstate import SeasonalitySSM
[39]:
from etna.transforms import FilterFeaturesTransform
[40]:
num_lags = 7
transforms = [
SegmentEncoderTransform(),
StandardScalerTransform(in_column="target"),
DateFlagsTransform(
day_number_in_week=True,
day_number_in_month=True,
day_number_in_year=False,
week_number_in_month=False,
week_number_in_year=False,
month_number_in_year=False,
season_number=False,
year_number=False,
is_weekend=False,
out_column="dateflag",
),
LagTransform(
in_column="target",
lags=[HORIZON + i for i in range(num_lags)],
out_column="target_lag",
),
LabelEncoderTransform(
in_column="dateflag_day_number_in_week", strategy="none", out_column="dateflag_day_number_in_week_label"
),
LabelEncoderTransform(
in_column="dateflag_day_number_in_month", strategy="none", out_column="dateflag_day_number_in_month_label"
),
FilterFeaturesTransform(exclude=["dateflag_day_number_in_week", "dateflag_day_number_in_month"]),
]
embedding_sizes = {
"dateflag_day_number_in_week_label": (7, 7),
"dateflag_day_number_in_month_label": (31, 7),
"segment_code": (4, 7),
}
[41]:
monthly_smm = SeasonalitySSM(num_seasons=31, timestamp_transform=lambda x: x.day - 1)
weekly_smm = SeasonalitySSM(num_seasons=7, timestamp_transform=lambda x: x.weekday())
[42]:
set_seed()
model_dsm = DeepStateModel(
ssm=CompositeSSM(seasonal_ssms=[weekly_smm, monthly_smm], nonseasonal_ssm=LevelTrendSSM()),
input_size=num_lags,
encoder_length=2 * HORIZON,
decoder_length=HORIZON,
embedding_sizes=embedding_sizes,
trainer_params=dict(max_epochs=5),
lr=1e-3,
)
pipeline_dsm = Pipeline(
model=model_dsm,
horizon=HORIZON,
transforms=transforms,
)
[43]:
metrics_dsm, forecast_dsm, fold_info_dsm = pipeline_dsm.backtest(ts, metrics=metrics, n_folds=3, n_jobs=1)
GPU available: True (mps), used: False
TPU available: False, using: 0 TPU cores
HPU available: False, using: 0 HPUs
| Name | Type | Params | Mode
------------------------------------------------------
0 | embedding | MultiEmbedding | 315 | train
1 | RNN | LSTM | 11.2 K | train
2 | projectors | ModuleDict | 5.0 K | train
------------------------------------------------------
16.5 K Trainable params
0 Non-trainable params
16.5 K Total params
0.066 Total estimated model params size (MB)
18 Modules in train mode
0 Modules in eval mode
`Trainer.fit` stopped: `max_epochs=5` reached.
[Parallel(n_jobs=1)]: Done 1 tasks | elapsed: 6.9s
GPU available: True (mps), used: False
TPU available: False, using: 0 TPU cores
HPU available: False, using: 0 HPUs
| Name | Type | Params | Mode
------------------------------------------------------
0 | embedding | MultiEmbedding | 315 | train
1 | RNN | LSTM | 11.2 K | train
2 | projectors | ModuleDict | 5.0 K | train
------------------------------------------------------
16.5 K Trainable params
0 Non-trainable params
16.5 K Total params
0.066 Total estimated model params size (MB)
18 Modules in train mode
0 Modules in eval mode
`Trainer.fit` stopped: `max_epochs=5` reached.
[Parallel(n_jobs=1)]: Done 2 tasks | elapsed: 13.8s
GPU available: True (mps), used: False
TPU available: False, using: 0 TPU cores
HPU available: False, using: 0 HPUs
| Name | Type | Params | Mode
------------------------------------------------------
0 | embedding | MultiEmbedding | 315 | train
1 | RNN | LSTM | 11.2 K | train
2 | projectors | ModuleDict | 5.0 K | train
------------------------------------------------------
16.5 K Trainable params
0 Non-trainable params
16.5 K Total params
0.066 Total estimated model params size (MB)
18 Modules in train mode
0 Modules in eval mode
`Trainer.fit` stopped: `max_epochs=5` reached.
[Parallel(n_jobs=1)]: Done 3 tasks | elapsed: 20.8s
[Parallel(n_jobs=1)]: Done 3 tasks | elapsed: 20.8s
[Parallel(n_jobs=1)]: Done 1 tasks | elapsed: 0.1s
[Parallel(n_jobs=1)]: Done 2 tasks | elapsed: 0.2s
[Parallel(n_jobs=1)]: Done 3 tasks | elapsed: 0.3s
[Parallel(n_jobs=1)]: Done 3 tasks | elapsed: 0.3s
[Parallel(n_jobs=1)]: Done 1 tasks | elapsed: 0.0s
[Parallel(n_jobs=1)]: Done 2 tasks | elapsed: 0.0s
[Parallel(n_jobs=1)]: Done 3 tasks | elapsed: 0.0s
[Parallel(n_jobs=1)]: Done 3 tasks | elapsed: 0.0s
[44]:
score = metrics_dsm["SMAPE"].mean()
print(f"Average SMAPE for DeepStateModel: {score:.3f}")
Average SMAPE for DeepStateModel: 5.520
[45]:
plot_backtest(forecast_dsm, ts, history_len=20)

2.7 N-BEATS Model#
This architecture is based on backward and forward residual links and a deep stack of fully connected layers.
There are two types of models in the library. The NBeatsGenericModel
class implements a generic deep learning model, while the NBeatsInterpretableModel
is augmented with certain inductive biases to be interpretable (trend and seasonality).
[46]:
from etna.models.nn import NBeatsGenericModel
from etna.models.nn import NBeatsInterpretableModel
[47]:
set_seed()
model_nbeats_generic = NBeatsGenericModel(
input_size=2 * HORIZON,
output_size=HORIZON,
loss="smape",
stacks=30,
layers=4,
layer_size=256,
trainer_params=dict(max_epochs=1000),
lr=1e-3,
)
pipeline_nbeats_generic = Pipeline(
model=model_nbeats_generic,
horizon=HORIZON,
transforms=[],
)
[48]:
metrics_nbeats_generic, forecast_nbeats_generic, _ = pipeline_nbeats_generic.backtest(
ts, metrics=metrics, n_folds=3, n_jobs=1
)
GPU available: True (mps), used: False
TPU available: False, using: 0 TPU cores
HPU available: False, using: 0 HPUs
| Name | Type | Params | Mode
----------------------------------------------
0 | model | NBeats | 206 K | train
1 | loss | NBeatsSMAPE | 0 | train
----------------------------------------------
206 K Trainable params
0 Non-trainable params
206 K Total params
0.826 Total estimated model params size (MB)
15 Modules in train mode
0 Modules in eval mode
`Trainer.fit` stopped: `max_epochs=1000` reached.
[Parallel(n_jobs=1)]: Done 1 tasks | elapsed: 28.0s
GPU available: True (mps), used: False
TPU available: False, using: 0 TPU cores
HPU available: False, using: 0 HPUs
| Name | Type | Params | Mode
----------------------------------------------
0 | model | NBeats | 206 K | train
1 | loss | NBeatsSMAPE | 0 | train
----------------------------------------------
206 K Trainable params
0 Non-trainable params
206 K Total params
0.826 Total estimated model params size (MB)
15 Modules in train mode
0 Modules in eval mode
`Trainer.fit` stopped: `max_epochs=1000` reached.
[Parallel(n_jobs=1)]: Done 2 tasks | elapsed: 1.1min
GPU available: True (mps), used: False
TPU available: False, using: 0 TPU cores
HPU available: False, using: 0 HPUs
| Name | Type | Params | Mode
----------------------------------------------
0 | model | NBeats | 206 K | train
1 | loss | NBeatsSMAPE | 0 | train
----------------------------------------------
206 K Trainable params
0 Non-trainable params
206 K Total params
0.826 Total estimated model params size (MB)
15 Modules in train mode
0 Modules in eval mode
`Trainer.fit` stopped: `max_epochs=1000` reached.
[Parallel(n_jobs=1)]: Done 3 tasks | elapsed: 1.7min
[Parallel(n_jobs=1)]: Done 3 tasks | elapsed: 1.7min
[Parallel(n_jobs=1)]: Done 1 tasks | elapsed: 0.0s
[Parallel(n_jobs=1)]: Done 2 tasks | elapsed: 0.0s
[Parallel(n_jobs=1)]: Done 3 tasks | elapsed: 0.1s
[Parallel(n_jobs=1)]: Done 3 tasks | elapsed: 0.1s
[Parallel(n_jobs=1)]: Done 1 tasks | elapsed: 0.0s
[Parallel(n_jobs=1)]: Done 2 tasks | elapsed: 0.0s
[Parallel(n_jobs=1)]: Done 3 tasks | elapsed: 0.0s
[Parallel(n_jobs=1)]: Done 3 tasks | elapsed: 0.0s
[49]:
score = metrics_nbeats_generic["SMAPE"].mean()
print(f"Average SMAPE for N-BEATS Generic: {score:.3f}")
Average SMAPE for N-BEATS Generic: 6.050
[50]:
plot_backtest(forecast_nbeats_generic, ts, history_len=20)

[51]:
model_nbeats_interp = NBeatsInterpretableModel(
input_size=4 * HORIZON,
output_size=HORIZON,
loss="smape",
trend_layer_size=64,
seasonality_layer_size=256,
trainer_params=dict(max_epochs=2000),
lr=1e-3,
)
pipeline_nbeats_interp = Pipeline(
model=model_nbeats_interp,
horizon=HORIZON,
transforms=[],
)
[52]:
metrics_nbeats_interp, forecast_nbeats_interp, _ = pipeline_nbeats_interp.backtest(
ts, metrics=metrics, n_folds=3, n_jobs=1
)
GPU available: True (mps), used: False
TPU available: False, using: 0 TPU cores
HPU available: False, using: 0 HPUs
| Name | Type | Params | Mode
----------------------------------------------
0 | model | NBeats | 224 K | train
1 | loss | NBeatsSMAPE | 0 | train
----------------------------------------------
223 K Trainable params
385 Non-trainable params
224 K Total params
0.896 Total estimated model params size (MB)
27 Modules in train mode
0 Modules in eval mode
`Trainer.fit` stopped: `max_epochs=2000` reached.
[Parallel(n_jobs=1)]: Done 1 tasks | elapsed: 42.5s
GPU available: True (mps), used: False
TPU available: False, using: 0 TPU cores
HPU available: False, using: 0 HPUs
| Name | Type | Params | Mode
----------------------------------------------
0 | model | NBeats | 224 K | train
1 | loss | NBeatsSMAPE | 0 | train
----------------------------------------------
223 K Trainable params
385 Non-trainable params
224 K Total params
0.896 Total estimated model params size (MB)
27 Modules in train mode
0 Modules in eval mode
`Trainer.fit` stopped: `max_epochs=2000` reached.
[Parallel(n_jobs=1)]: Done 2 tasks | elapsed: 1.4min
GPU available: True (mps), used: False
TPU available: False, using: 0 TPU cores
HPU available: False, using: 0 HPUs
| Name | Type | Params | Mode
----------------------------------------------
0 | model | NBeats | 224 K | train
1 | loss | NBeatsSMAPE | 0 | train
----------------------------------------------
223 K Trainable params
385 Non-trainable params
224 K Total params
0.896 Total estimated model params size (MB)
27 Modules in train mode
0 Modules in eval mode
`Trainer.fit` stopped: `max_epochs=2000` reached.
[Parallel(n_jobs=1)]: Done 3 tasks | elapsed: 2.0min
[Parallel(n_jobs=1)]: Done 3 tasks | elapsed: 2.0min
[Parallel(n_jobs=1)]: Done 1 tasks | elapsed: 0.0s
[Parallel(n_jobs=1)]: Done 2 tasks | elapsed: 0.0s
[Parallel(n_jobs=1)]: Done 3 tasks | elapsed: 0.0s
[Parallel(n_jobs=1)]: Done 3 tasks | elapsed: 0.0s
[Parallel(n_jobs=1)]: Done 1 tasks | elapsed: 0.0s
[Parallel(n_jobs=1)]: Done 2 tasks | elapsed: 0.0s
[Parallel(n_jobs=1)]: Done 3 tasks | elapsed: 0.0s
[Parallel(n_jobs=1)]: Done 3 tasks | elapsed: 0.0s
[53]:
score = metrics_nbeats_interp["SMAPE"].mean()
print(f"Average SMAPE for N-BEATS Interpretable: {score:.3f}")
Average SMAPE for N-BEATS Interpretable: 5.693
[54]:
plot_backtest(forecast_nbeats_interp, ts, history_len=20)

2.8 PatchTST Model#
Model with transformer encoder that uses patches of timeseries as input words and linear decoder.
[55]:
from etna.models.nn import PatchTSTModel
[56]:
set_seed()
model_patchtst = PatchTSTModel(
decoder_length=HORIZON,
encoder_length=2 * HORIZON,
patch_len=1,
trainer_params=dict(max_epochs=30),
lr=1e-3,
train_batch_size=64,
)
pipeline_patchtst = Pipeline(
model=model_patchtst, horizon=HORIZON, transforms=[StandardScalerTransform(in_column="target")]
)
metrics_patchtst, forecast_patchtst, fold_info_patchtst = pipeline_patchtst.backtest(
ts, metrics=metrics, n_folds=3, n_jobs=1
)
GPU available: True (mps), used: False
TPU available: False, using: 0 TPU cores
HPU available: False, using: 0 HPUs
| Name | Type | Params | Mode
--------------------------------------------------
0 | loss | MSELoss | 0 | train
1 | model | Sequential | 397 K | train
2 | projection | Sequential | 1.8 K | train
--------------------------------------------------
399 K Trainable params
0 Non-trainable params
399 K Total params
1.598 Total estimated model params size (MB)
40 Modules in train mode
0 Modules in eval mode
`Trainer.fit` stopped: `max_epochs=30` reached.
[Parallel(n_jobs=1)]: Done 1 tasks | elapsed: 4.2min
GPU available: True (mps), used: False
TPU available: False, using: 0 TPU cores
HPU available: False, using: 0 HPUs
| Name | Type | Params | Mode
--------------------------------------------------
0 | loss | MSELoss | 0 | train
1 | model | Sequential | 397 K | train
2 | projection | Sequential | 1.8 K | train
--------------------------------------------------
399 K Trainable params
0 Non-trainable params
399 K Total params
1.598 Total estimated model params size (MB)
40 Modules in train mode
0 Modules in eval mode
`Trainer.fit` stopped: `max_epochs=30` reached.
[Parallel(n_jobs=1)]: Done 2 tasks | elapsed: 8.4min
GPU available: True (mps), used: False
TPU available: False, using: 0 TPU cores
HPU available: False, using: 0 HPUs
| Name | Type | Params | Mode
--------------------------------------------------
0 | loss | MSELoss | 0 | train
1 | model | Sequential | 397 K | train
2 | projection | Sequential | 1.8 K | train
--------------------------------------------------
399 K Trainable params
0 Non-trainable params
399 K Total params
1.598 Total estimated model params size (MB)
40 Modules in train mode
0 Modules in eval mode
`Trainer.fit` stopped: `max_epochs=30` reached.
[Parallel(n_jobs=1)]: Done 3 tasks | elapsed: 12.5min
[Parallel(n_jobs=1)]: Done 3 tasks | elapsed: 12.5min
[Parallel(n_jobs=1)]: Done 1 tasks | elapsed: 0.0s
[Parallel(n_jobs=1)]: Done 2 tasks | elapsed: 0.1s
[Parallel(n_jobs=1)]: Done 3 tasks | elapsed: 0.1s
[Parallel(n_jobs=1)]: Done 3 tasks | elapsed: 0.1s
[Parallel(n_jobs=1)]: Done 1 tasks | elapsed: 0.0s
[Parallel(n_jobs=1)]: Done 2 tasks | elapsed: 0.0s
[Parallel(n_jobs=1)]: Done 3 tasks | elapsed: 0.0s
[Parallel(n_jobs=1)]: Done 3 tasks | elapsed: 0.0s
[57]:
score = metrics_patchtst["SMAPE"].mean()
print(f"Average SMAPE for PatchTST: {score:.3f}")
Average SMAPE for PatchTST: 6.461
[58]:
plot_backtest(forecast_patchtst, ts, history_len=20)

2.9 Chronos Model#
Chronos is pretrained model for zero-shot forecasting.
[59]:
from etna.models.nn import ChronosModel
To get list of available models use list_models
.
[60]:
ChronosModel.list_models()
[60]:
['amazon/chronos-t5-tiny',
'amazon/chronos-t5-mini',
'amazon/chronos-t5-small',
'amazon/chronos-t5-base',
'amazon/chronos-t5-large']
Let’s try the smallest model.
[61]:
set_seed()
model_chronos = ChronosModel(path_or_url="amazon/chronos-t5-tiny", encoder_length=2 * HORIZON, num_samples=10)
pipeline_chronos = Pipeline(model=model_chronos, horizon=HORIZON, transforms=[])
metrics_chronos, forecast_chronos, fold_info_chronos = pipeline_chronos.backtest(
ts, metrics=metrics, n_folds=3, n_jobs=1
)
[Parallel(n_jobs=1)]: Done 1 tasks | elapsed: 0.0s
[Parallel(n_jobs=1)]: Done 2 tasks | elapsed: 0.1s
[Parallel(n_jobs=1)]: Done 3 tasks | elapsed: 0.1s
[Parallel(n_jobs=1)]: Done 3 tasks | elapsed: 0.1s
[Parallel(n_jobs=1)]: Done 1 tasks | elapsed: 0.1s
[Parallel(n_jobs=1)]: Done 2 tasks | elapsed: 0.1s
[Parallel(n_jobs=1)]: Done 3 tasks | elapsed: 0.2s
[Parallel(n_jobs=1)]: Done 3 tasks | elapsed: 0.2s
[Parallel(n_jobs=1)]: Done 1 tasks | elapsed: 0.0s
[Parallel(n_jobs=1)]: Done 2 tasks | elapsed: 0.0s
[Parallel(n_jobs=1)]: Done 3 tasks | elapsed: 0.0s
[Parallel(n_jobs=1)]: Done 3 tasks | elapsed: 0.0s
[62]:
score = metrics_chronos["SMAPE"].mean()
print(f"Average SMAPE for Chronos tiny: {score:.3f}")
Average SMAPE for Chronos tiny: 12.999
Not good. Let’s try to set encoder_length
equals the available history of dataset. As available history length for each fold is different, so you can set encoder_length
equals to length of the initial dataset - model will get all available history as a context.
[63]:
dataset_length = ts.size()[0]
[64]:
set_seed()
model_chronos = ChronosModel(path_or_url="amazon/chronos-t5-tiny", encoder_length=dataset_length, num_samples=10)
pipeline_chronos = Pipeline(model=model_chronos, horizon=HORIZON, transforms=[])
metrics_chronos, forecast_chronos, fold_info_chronos = pipeline_chronos.backtest(
ts, metrics=metrics, n_folds=3, n_jobs=1
)
[Parallel(n_jobs=1)]: Done 1 tasks | elapsed: 0.0s
[Parallel(n_jobs=1)]: Done 2 tasks | elapsed: 0.0s
[Parallel(n_jobs=1)]: Done 3 tasks | elapsed: 0.0s
[Parallel(n_jobs=1)]: Done 3 tasks | elapsed: 0.0s
[Parallel(n_jobs=1)]: Done 1 tasks | elapsed: 0.2s
[Parallel(n_jobs=1)]: Done 2 tasks | elapsed: 0.4s
[Parallel(n_jobs=1)]: Done 3 tasks | elapsed: 0.6s
[Parallel(n_jobs=1)]: Done 3 tasks | elapsed: 0.6s
[Parallel(n_jobs=1)]: Done 1 tasks | elapsed: 0.0s
[Parallel(n_jobs=1)]: Done 2 tasks | elapsed: 0.0s
[Parallel(n_jobs=1)]: Done 3 tasks | elapsed: 0.0s
[Parallel(n_jobs=1)]: Done 3 tasks | elapsed: 0.0s
[65]:
score = metrics_chronos["SMAPE"].mean()
print(f"Average SMAPE for Chronos tiny with long context: {score:.3f}")
Average SMAPE for Chronos tiny with long context: 7.094
Better. Let’s get more complex model.
[66]:
set_seed()
model_chronos = ChronosModel(path_or_url="amazon/chronos-t5-small", encoder_length=dataset_length, num_samples=10)
pipeline_chronos = Pipeline(model=model_chronos, horizon=HORIZON, transforms=[])
metrics_chronos, forecast_chronos, fold_info_chronos = pipeline_chronos.backtest(
ts, metrics=metrics, n_folds=3, n_jobs=1
)
[Parallel(n_jobs=1)]: Done 1 tasks | elapsed: 0.2s
[Parallel(n_jobs=1)]: Done 2 tasks | elapsed: 0.2s
[Parallel(n_jobs=1)]: Done 3 tasks | elapsed: 0.2s
[Parallel(n_jobs=1)]: Done 3 tasks | elapsed: 0.2s
[Parallel(n_jobs=1)]: Done 1 tasks | elapsed: 0.7s
[Parallel(n_jobs=1)]: Done 2 tasks | elapsed: 1.5s
[Parallel(n_jobs=1)]: Done 3 tasks | elapsed: 2.4s
[Parallel(n_jobs=1)]: Done 3 tasks | elapsed: 2.4s
[Parallel(n_jobs=1)]: Done 1 tasks | elapsed: 0.0s
[Parallel(n_jobs=1)]: Done 2 tasks | elapsed: 0.0s
[Parallel(n_jobs=1)]: Done 3 tasks | elapsed: 0.0s
[Parallel(n_jobs=1)]: Done 3 tasks | elapsed: 0.0s
[67]:
score = metrics_chronos["SMAPE"].mean()
print(f"Average SMAPE for Chronos small with long context: {score:.3f}")
Average SMAPE for Chronos small with long context: 5.446
[68]:
plot_backtest(forecast_chronos, ts, history_len=20)

We get competitive results compared to results of models, that were directly trained on forecasting dataset. For the best results you can try the most complex model chronos-t5-large
.
2.10 Chronos Bolt Model#
Chronos Bolt is one more Chronos-like model with faster and more accurate forecasts. ChronosBoltModel
has the same interface as ChronosModel
.
[69]:
from etna.models.nn import ChronosBoltModel
[70]:
ChronosBoltModel.list_models()
[70]:
['amazon/chronos-bolt-tiny',
'amazon/chronos-bolt-mini',
'amazon/chronos-bolt-small',
'amazon/chronos-bolt-base']
[71]:
set_seed()
model_chronos_bolt = ChronosBoltModel(path_or_url="amazon/chronos-bolt-small", encoder_length=dataset_length)
pipeline_chronos_bolt = Pipeline(model=model_chronos_bolt, horizon=HORIZON, transforms=[])
metrics_chronos_bolt, forecast_chronos_bolt, fold_info_chronos_bolt = pipeline_chronos_bolt.backtest(
ts, metrics=metrics, n_folds=3, n_jobs=1
)
[Parallel(n_jobs=1)]: Done 1 tasks | elapsed: 0.2s
[Parallel(n_jobs=1)]: Done 2 tasks | elapsed: 0.2s
[Parallel(n_jobs=1)]: Done 3 tasks | elapsed: 0.2s
[Parallel(n_jobs=1)]: Done 3 tasks | elapsed: 0.2s
Passing a tuple of `past_key_values` is deprecated and will be removed in Transformers v4.48.0. You should pass an instance of `EncoderDecoderCache` instead, e.g. `past_key_values=EncoderDecoderCache.from_legacy_cache(past_key_values)`.
[Parallel(n_jobs=1)]: Done 1 tasks | elapsed: 0.0s
[Parallel(n_jobs=1)]: Done 2 tasks | elapsed: 0.1s
[Parallel(n_jobs=1)]: Done 3 tasks | elapsed: 0.1s
[Parallel(n_jobs=1)]: Done 3 tasks | elapsed: 0.1s
[Parallel(n_jobs=1)]: Done 1 tasks | elapsed: 0.0s
[Parallel(n_jobs=1)]: Done 2 tasks | elapsed: 0.0s
[Parallel(n_jobs=1)]: Done 3 tasks | elapsed: 0.0s
[Parallel(n_jobs=1)]: Done 3 tasks | elapsed: 0.0s
[72]:
score = metrics_chronos_bolt["SMAPE"].mean()
print(f"Average SMAPE for Chronos Bolt small with long context: {score:.3f}")
Average SMAPE for Chronos Bolt small with long context: 5.877
2.11 TimesFm Model#
TimesFMModel
is one more pretrained model for zero-shot forecasting. It has similar interface to ChronosBoltModel
and ChronosModel
.
[73]:
from etna.models.nn import TimesFMModel
To get list of available models use list_models
.
[74]:
TimesFMModel.list_models()
[74]:
['google/timesfm-1.0-200m-pytorch', 'google/timesfm-2.0-500m-pytorch']
Be careful. encoder_length
needs to be a multiplier of 32.
Take 200m model.
[75]:
set_seed()
model_timesfm = TimesFMModel(path_or_url="google/timesfm-1.0-200m-pytorch", encoder_length=64)
pipeline_timesfm = Pipeline(model=model_timesfm, horizon=HORIZON, transforms=[])
metrics_timesfm, forecast_timesfm, fold_info_timesfm = pipeline_timesfm.backtest(
ts, metrics=metrics, n_folds=3, n_jobs=1
)
[Parallel(n_jobs=1)]: Done 1 tasks | elapsed: 0.1s
[Parallel(n_jobs=1)]: Done 2 tasks | elapsed: 0.1s
[Parallel(n_jobs=1)]: Done 3 tasks | elapsed: 0.2s
[Parallel(n_jobs=1)]: Done 3 tasks | elapsed: 0.2s
[Parallel(n_jobs=1)]: Done 1 tasks | elapsed: 0.2s
[Parallel(n_jobs=1)]: Done 2 tasks | elapsed: 0.3s
[Parallel(n_jobs=1)]: Done 3 tasks | elapsed: 0.5s
[Parallel(n_jobs=1)]: Done 3 tasks | elapsed: 0.5s
[Parallel(n_jobs=1)]: Done 1 tasks | elapsed: 0.0s
[Parallel(n_jobs=1)]: Done 2 tasks | elapsed: 0.0s
[Parallel(n_jobs=1)]: Done 3 tasks | elapsed: 0.0s
[Parallel(n_jobs=1)]: Done 3 tasks | elapsed: 0.0s
[76]:
score = metrics_timesfm["SMAPE"].mean()
print(f"Average SMAPE for TimesFM 200m: {score:.3f}")
Average SMAPE for TimesFM 200m: 5.431
Models can work with exogenous features.
[77]:
set_seed()
transforms = [
LagTransform(in_column="target", lags=range(HORIZON, 2 * HORIZON), out_column="lag"),
]
model_timesfm = TimesFMModel(
path_or_url="google/timesfm-1.0-200m-pytorch",
encoder_length=64,
time_varying_reals=[f"lag_{i}" for i in range(HORIZON, 2 * HORIZON)],
)
pipeline_timesfm = Pipeline(model=model_timesfm, horizon=HORIZON, transforms=transforms)
metrics_timesfm, forecast_timesfm, fold_info_timesfm = pipeline_timesfm.backtest(
ts, metrics=metrics, n_folds=3, n_jobs=1
)
[Parallel(n_jobs=1)]: Done 1 tasks | elapsed: 0.1s
[Parallel(n_jobs=1)]: Done 2 tasks | elapsed: 0.1s
[Parallel(n_jobs=1)]: Done 3 tasks | elapsed: 0.2s
[Parallel(n_jobs=1)]: Done 3 tasks | elapsed: 0.2s
[Parallel(n_jobs=1)]: Done 1 tasks | elapsed: 0.7s
[Parallel(n_jobs=1)]: Done 2 tasks | elapsed: 0.9s
[Parallel(n_jobs=1)]: Done 3 tasks | elapsed: 1.0s
[Parallel(n_jobs=1)]: Done 3 tasks | elapsed: 1.0s
[Parallel(n_jobs=1)]: Done 1 tasks | elapsed: 0.0s
[Parallel(n_jobs=1)]: Done 2 tasks | elapsed: 0.0s
[Parallel(n_jobs=1)]: Done 3 tasks | elapsed: 0.0s
[Parallel(n_jobs=1)]: Done 3 tasks | elapsed: 0.0s
[78]:
score = metrics_timesfm["SMAPE"].mean()
print(f"Average SMAPE for TimesFM 200m with exogenous features: {score:.3f}")
Average SMAPE for TimesFM 200m with exogenous features: 5.381
Take 500m model.
[79]:
set_seed()
model_timesfm = TimesFMModel(
path_or_url="google/timesfm-2.0-500m-pytorch", encoder_length=64, num_layers=50, use_positional_embedding=False
)
pipeline_timesfm = Pipeline(model=model_timesfm, horizon=HORIZON, transforms=[])
metrics_timesfm, forecast_timesfm, fold_info_timesfm = pipeline_timesfm.backtest(
ts, metrics=metrics, n_folds=3, n_jobs=1
)
[Parallel(n_jobs=1)]: Done 1 tasks | elapsed: 0.2s
[Parallel(n_jobs=1)]: Done 2 tasks | elapsed: 0.5s
[Parallel(n_jobs=1)]: Done 3 tasks | elapsed: 1.4s
[Parallel(n_jobs=1)]: Done 3 tasks | elapsed: 1.4s
[Parallel(n_jobs=1)]: Done 1 tasks | elapsed: 1.1s
[Parallel(n_jobs=1)]: Done 2 tasks | elapsed: 1.9s
[Parallel(n_jobs=1)]: Done 3 tasks | elapsed: 3.2s
[Parallel(n_jobs=1)]: Done 3 tasks | elapsed: 3.2s
[Parallel(n_jobs=1)]: Done 1 tasks | elapsed: 0.0s
[Parallel(n_jobs=1)]: Done 2 tasks | elapsed: 0.0s
[Parallel(n_jobs=1)]: Done 3 tasks | elapsed: 0.0s
[Parallel(n_jobs=1)]: Done 3 tasks | elapsed: 0.0s
[80]:
score = metrics_timesfm["SMAPE"].mean()
print(f"Average SMAPE for TimesFM 500m: {score:.3f}")
Average SMAPE for TimesFM 500m: 5.053
[81]:
plot_backtest(forecast_timesfm, ts, history_len=20)
