FilterFeaturesTransform

class FilterFeaturesTransform(include: Optional[Sequence[str]] = None, exclude: Optional[Sequence[str]] = None, return_features: bool = False)[source]

Bases: etna.transforms.base.Transform

Filters features in each segment of the dataframe.

Create instance of FilterFeaturesTransform.

Parameters
  • include (Optional[Sequence[str]]) – list of columns to pass through filter

  • exclude (Optional[Sequence[str]]) – list of columns to not pass through

  • return_features (bool) – indicates whether to return features or not.

Raises

ValueError: – if both options set or non of them

Inherited-members

Methods

fit(df)

Fit method does nothing and is kept for compatibility.

fit_transform(df)

May be reimplemented.

inverse_transform(df)

Apply inverse transform to the data.

load(path)

Load an object.

save(path)

Save the object.

to_dict()

Collect all information about etna object in dict.

transform(df)

Filter features according to include/exclude parameters.

fit(df: pandas.core.frame.DataFrame) etna.transforms.feature_selection.filter.FilterFeaturesTransform[source]

Fit method does nothing and is kept for compatibility.

Parameters

df (pandas.core.frame.DataFrame) – dataframe with data.

Returns

result

Return type

FilterFeaturesTransform

inverse_transform(df: pandas.core.frame.DataFrame) pandas.core.frame.DataFrame[source]

Apply inverse transform to the data.

Parameters

df (pandas.core.frame.DataFrame) – dataframe to apply inverse transformation

Returns

result – dataframe before transformation

Return type

pd.DataFrame

transform(df: pandas.core.frame.DataFrame) pandas.core.frame.DataFrame[source]

Filter features according to include/exclude parameters.

Parameters

df (pandas.core.frame.DataFrame) – dataframe with data to transform.

Returns

result – transformed dataframe

Return type

pd.Dataframe