MinMaxScalerTransform¶
- class MinMaxScalerTransform(in_column: Optional[Union[str, List[str]]] = None, inplace: bool = True, out_column: Optional[str] = None, feature_range: Tuple[float, float] = (0, 1), clip: bool = True, mode: Union[etna.transforms.math.sklearn.TransformMode, str] = 'per-segment')[source]¶
Bases:
etna.transforms.math.sklearn.SklearnTransformTransform features by scaling each feature to a given range.
Uses
sklearn.preprocessing.MinMaxScalerinside.Warning
This transform can suffer from look-ahead bias. For transforming data at some timestamp it uses information from the whole train part.
Init MinMaxScalerPreprocess.
- Parameters
in_column (Optional[Union[str, List[str]]]) – columns to be scaled, if None - all columns will be scaled.
inplace (bool) – features are changed by scaled.
out_column (Optional[str]) – base for the names of generated columns, uses
self.__repr__()if not given.feature_range (Tuple[float, float]) – desired range of transformed data.
clip (bool) – set to True to clip transformed values of held-out data to provided feature range.
mode (Union[etna.transforms.math.sklearn.TransformMode, str]) –
“macro” or “per-segment”, way to transform features over segments.
If “macro”, transforms features globally, gluing the corresponding ones for all segments.
If “per-segment”, transforms features for each segment separately.
- Raises
ValueError: – if incorrect mode given
- Inherited-members
Methods
fit(df)Fit transformer with data from df.
fit_transform(df)May be reimplemented.
inverse_transform(df)Apply inverse transformation to DataFrame.
load(path)Load an object.
save(path)Save the object.
to_dict()Collect all information about etna object in dict.
transform(df)Transform given data with fitted transformer.