etna.clustering.EuclideanDistance#
- class EuclideanDistance(trim_series: bool = True)[source]#
- Bases: - Distance- Euclidean distance handler. - Init EuclideanDistance. - Parameters:
- trim_series (bool) – if True, compare parts of series with common timestamp 
 - Methods - get_average(ts, **kwargs)- Get series that minimizes squared distance to given ones according to the Distance. - set_params(**params)- Return new object instance with modified parameters. - to_dict()- Collect all information about etna object in dict. - __call__(x1, x2)- Compute distance between x1 and x2. - Attributes - This class stores its - __init__parameters as attributes.- get_average(ts: TSDataset, **kwargs: Dict[str, Any]) DataFrame[source]#
- Get series that minimizes squared distance to given ones according to the Distance. 
 - set_params(**params: dict) Self[source]#
- Return new object instance with modified parameters. - Method also allows to change parameters of nested objects within the current object. For example, it is possible to change parameters of a - modelin a- Pipeline.- Nested parameters are expected to be in a - <component_1>.<...>.<parameter>form, where components are separated by a dot.- Parameters:
- **params (dict) – Estimator parameters 
- Returns:
- New instance with changed parameters 
- Return type:
- Self 
 - Examples - >>> from etna.pipeline import Pipeline >>> from etna.models import NaiveModel >>> from etna.transforms import AddConstTransform >>> model = NaiveModel(lag=1) >>> transforms = [AddConstTransform(in_column="target", value=1)] >>> pipeline = Pipeline(model, transforms=transforms, horizon=3) >>> pipeline.set_params(**{"model.lag": 3, "transforms.0.value": 2}) Pipeline(model = NaiveModel(lag = 3, ), transforms = [AddConstTransform(in_column = 'target', value = 2, inplace = True, out_column = None, )], horizon = 3, )