etna.models.nn.PytorchForecastingDatasetBuilder#
- class PytorchForecastingDatasetBuilder(max_encoder_length: int = 30, min_encoder_length: int | None = None, min_prediction_idx: int | None = None, min_prediction_length: int | None = None, max_prediction_length: int = 1, static_categoricals: List[str] | None = None, static_reals: List[str] | None = None, time_varying_known_categoricals: List[str] | None = None, time_varying_known_reals: List[str] | None = None, time_varying_unknown_categoricals: List[str] | None = None, time_varying_unknown_reals: List[str] | None = None, variable_groups: Dict[str, List[int]] | None = None, constant_fill_strategy: Dict[str, str | float | int | bool] | None = None, allow_missing_timesteps: bool = True, lags: Dict[str, List[int]] | None = None, add_relative_time_idx: bool = True, add_target_scales: bool = True, add_encoder_length: bool | str = True, target_normalizer: TorchNormalizer | NaNLabelEncoder | EncoderNormalizer | str | List[TorchNormalizer | NaNLabelEncoder | EncoderNormalizer] | Tuple[TorchNormalizer | NaNLabelEncoder | EncoderNormalizer] = 'auto', categorical_encoders: Dict[str, NaNLabelEncoder] | None = None, scalers: Dict[str, StandardScaler | RobustScaler | TorchNormalizer | EncoderNormalizer] | None = None)[source]#
- Bases: - BaseMixin- Builder for PytorchForecasting dataset. - Note - This class requires - torchextension to be installed. Read more about this at installation page.- Init dataset builder. - Parameters here is used for initialization of - pytorch_forecasting.data.timeseries.TimeSeriesDataSetobject.- Methods - create_inference_dataset(ts, horizon)- Create inference dataset. - Create train dataset. - set_params(**params)- Return new object instance with modified parameters. - to_dict()- Collect all information about etna object in dict. - Attributes - This class stores its - __init__parameters as attributes.- Parameters:
- max_encoder_length (int) – 
- min_encoder_length (int | None) – 
- min_prediction_idx (int | None) – 
- min_prediction_length (int | None) – 
- max_prediction_length (int) – 
- constant_fill_strategy (Dict[str, str | float | int | bool] | None) – 
- allow_missing_timesteps (bool) – 
- add_relative_time_idx (bool) – 
- add_target_scales (bool) – 
- target_normalizer (TorchNormalizer | NaNLabelEncoder | EncoderNormalizer | str | List[TorchNormalizer | NaNLabelEncoder | EncoderNormalizer] | Tuple[TorchNormalizer | NaNLabelEncoder | EncoderNormalizer]) – 
- categorical_encoders (Dict[str, NaNLabelEncoder] | None) – 
- scalers (Dict[str, StandardScaler | RobustScaler | TorchNormalizer | EncoderNormalizer] | None) – 
 
 - create_inference_dataset(ts: TSDataset, horizon: int) TimeSeriesDataSet[source]#
- Create inference dataset. - This method should be used only after - create_train_datasetthat is used during model training.- Parameters:
- Raises:
- ValueError: – if method was used before - create_train_dataset
- Return type:
 
 - create_train_dataset(ts: TSDataset) TimeSeriesDataSet[source]#
- Create train dataset. - Parameters:
- ts (TSDataset) – Time series dataset. 
- Return type:
 
 - set_params(**params: dict) Self[source]#
- Return new object instance with modified parameters. - Method also allows to change parameters of nested objects within the current object. For example, it is possible to change parameters of a - modelin a- Pipeline.- Nested parameters are expected to be in a - <component_1>.<...>.<parameter>form, where components are separated by a dot.- Parameters:
- **params (dict) – Estimator parameters 
- Returns:
- New instance with changed parameters 
- Return type:
- Self 
 - Examples - >>> from etna.pipeline import Pipeline >>> from etna.models import NaiveModel >>> from etna.transforms import AddConstTransform >>> model = NaiveModel(lag=1) >>> transforms = [AddConstTransform(in_column="target", value=1)] >>> pipeline = Pipeline(model, transforms=transforms, horizon=3) >>> pipeline.set_params(**{"model.lag": 3, "transforms.0.value": 2}) Pipeline(model = NaiveModel(lag = 3, ), transforms = [AddConstTransform(in_column = 'target', value = 2, inplace = True, out_column = None, )], horizon = 3, )