etna.pipeline.FoldMask#
- class FoldMask(first_train_timestamp: str | Timestamp | None, last_train_timestamp: str | Timestamp, target_timestamps: List[str | Timestamp])[source]#
- Bases: - BaseMixin- Container to hold the description of the fold mask. - Fold masks are expected to be used for backtest strategy customization. - Init FoldMask. - Parameters:
 - Methods - set_params(**params)- Return new object instance with modified parameters. - to_dict()- Collect all information about etna object in dict. - validate_on_dataset(ts, horizon)- Validate fold mask on the dataset with specified horizon. - Attributes - This class stores its - __init__parameters as attributes.- set_params(**params: dict) Self[source]#
- Return new object instance with modified parameters. - Method also allows to change parameters of nested objects within the current object. For example, it is possible to change parameters of a - modelin a- Pipeline.- Nested parameters are expected to be in a - <component_1>.<...>.<parameter>form, where components are separated by a dot.- Parameters:
- **params (dict) – Estimator parameters 
- Returns:
- New instance with changed parameters 
- Return type:
- Self 
 - Examples - >>> from etna.pipeline import Pipeline >>> from etna.models import NaiveModel >>> from etna.transforms import AddConstTransform >>> model = model=NaiveModel(lag=1) >>> transforms = [AddConstTransform(in_column="target", value=1)] >>> pipeline = Pipeline(model, transforms=transforms, horizon=3) >>> pipeline.set_params(**{"model.lag": 3, "transforms.0.value": 2}) Pipeline(model = NaiveModel(lag = 3, ), transforms = [AddConstTransform(in_column = 'target', value = 2, inplace = True, out_column = None, )], horizon = 3, )