Auto#
Module for AutoML utilities.
Basic usage#
import pathlib
import pandas as pd
from etna.auto import Auto
from etna.datasets import TSDataset
from etna.metrics import SMAPE
CURRENT_DIR_PATH = pathlib.Path(__file__).parent
if __name__ == "__main__":
   df = pd.read_csv(CURRENT_DIR_PATH / "data" / "example_dataset.csv")
   ts = TSDataset.to_dataset(df)
   ts = TSDataset(ts, freq="D")
   # Create Auto object for greedy search
   # All trials will be saved in sqlite database
   # You can use it later for analysis with ``Auto.summary``
   auto = Auto(
      target_metric=SMAPE(),
      horizon=14,
      experiment_folder="auto-example",
   )
   # Get best pipeline
   best_pipeline = auto.fit(ts, catch=(Exception,))
   print(best_pipeline)
   # Get all metrics of greedy search
   print(auto.summary())
API details#
Auto classes:
| 
 | Automatic pipeline selection via defined or custom pipeline pool. | 
| 
 | Automatic tuning of custom pipeline. | 
Pre-defined pool with pipelines:
| 
 | Predefined pools of pipelines. | 
Runners:
| Abstract class for Runner. | |
| LocalRunner for one threaded run. | |
| 
 | ParallelLocalRunner for multiple parallel runs with joblib. |