etna.transforms.FourierTransform#
- class FourierTransform(period: float, order: int | None = None, mods: Sequence[int] | None = None, out_column: str | None = None)[source]#
- Bases: - IrreversibleTransform- Adds fourier features to the dataset. - Notes - To understand how transform works we recommend: Fourier series. - Parameter - periodis responsible for the seasonality we want to capture.
- Parameters - orderand- modsdefine which harmonics will be used.
 - Parameter - orderis a more user-friendly version of- mods. For example,- order=2can be represented as- mods=[1, 2, 3, 4]if- period> 4 and as- mods=[1, 2, 3]if 3 <=- period<= 4.- Create instance of FourierTransform. - Parameters:
- period (float) – - the period of the seasonality to capture in frequency units of time series; - periodshould be >= 2
- order (int | None) – - upper order of Fourier components to include; - ordershould be >= 1 and <= ceil(period/2))
- alternative and precise way of defining which harmonics will be used, for example - mods=[1, 3, 4]means that sin of the first order and sin and cos of the second order will be used;- modsshould be >= 1 and < period
- out_column (str | None) – - if set, name of added column, the final name will be ‘{out_columnt}_{mod}’; 
- if don’t set, name will be - transform.__repr__(), repr will be made for transform that creates exactly this column
 
 
- Raises:
- ValueError: – if period < 2 
- ValueError: – if both or none of order, mods is set 
- ValueError: – if order is < 1 or > ceil(period/2) 
- ValueError: – if at least one mod is < 1 or >= period 
 
 - Methods - fit(ts)- Fit the transform. - fit_transform(ts)- Fit and transform TSDataset. - Return the list with regressors created by the transform. - Inverse transform TSDataset. - load(path)- Load an object. - Get default grid for tuning hyperparameters. - save(path)- Save the object. - set_params(**params)- Return new object instance with modified parameters. - to_dict()- Collect all information about etna object in dict. - transform(ts)- Transform TSDataset inplace. - Attributes - This class stores its - __init__parameters as attributes.- fit(ts: TSDataset) Transform[source]#
- Fit the transform. - Parameters:
- ts (TSDataset) – Dataset to fit the transform on. 
- Returns:
- The fitted transform instance. 
- Return type:
- Transform 
 
 - fit_transform(ts: TSDataset) TSDataset[source]#
- Fit and transform TSDataset. - May be reimplemented. But it is not recommended. 
 - classmethod load(path: Path) Self[source]#
- Load an object. - Warning - This method uses - dillmodule which is not secure. It is possible to construct malicious data which will execute arbitrary code during loading. Never load data that could have come from an untrusted source, or that could have been tampered with.- Parameters:
- path (Path) – Path to load object from. 
- Returns:
- Loaded object. 
- Return type:
- Self 
 
 - params_to_tune() Dict[str, BaseDistribution][source]#
- Get default grid for tuning hyperparameters. - If - self.orderis set then this grid tunes- orderparameter: Other parameters are expected to be set by the user.- Returns:
- Grid to tune. 
- Return type:
 
 - set_params(**params: dict) Self[source]#
- Return new object instance with modified parameters. - Method also allows to change parameters of nested objects within the current object. For example, it is possible to change parameters of a - modelin a- Pipeline.- Nested parameters are expected to be in a - <component_1>.<...>.<parameter>form, where components are separated by a dot.- Parameters:
- **params (dict) – Estimator parameters 
- Returns:
- New instance with changed parameters 
- Return type:
- Self 
 - Examples - >>> from etna.pipeline import Pipeline >>> from etna.models import NaiveModel >>> from etna.transforms import AddConstTransform >>> model = model=NaiveModel(lag=1) >>> transforms = [AddConstTransform(in_column="target", value=1)] >>> pipeline = Pipeline(model, transforms=transforms, horizon=3) >>> pipeline.set_params(**{"model.lag": 3, "transforms.0.value": 2}) Pipeline(model = NaiveModel(lag = 3, ), transforms = [AddConstTransform(in_column = 'target', value = 2, inplace = True, out_column = None, )], horizon = 3, )