etna.loggers.ConsoleLogger#
- class ConsoleLogger(table: bool = True)[source]#
- Bases: - BaseLogger- Log any events and metrics to stderr output. Uses loguru. - Create instance of ConsoleLogger. - Parameters:
- table (bool) – Indicator for writing tables to the console 
 - Methods - finish_experiment(*args, **kwargs)- Finish experiment. - log(msg, **kwargs)- Log any event. - log_backtest_metrics(ts, metrics_df, ...)- Write metrics to logger. - log_backtest_run(metrics, forecast, test)- Backtest metrics from one fold to logger. - set_params(**params)- Return new object instance with modified parameters. - start_experiment(*args, **kwargs)- Start experiment. - to_dict()- Collect all information about etna object in dict. - Attributes - This class stores its - __init__parameters as attributes.- Pytorch lightning loggers. - log(msg: str | Dict[str, Any], **kwargs)[source]#
- Log any event. - e.g. “Fitted segment segment_name” to stderr output. 
 - log_backtest_metrics(ts: TSDataset, metrics_df: DataFrame, forecast_df: DataFrame, fold_info_df: DataFrame)[source]#
- Write metrics to logger. - Parameters:
 - Notes - The result of logging will be different for - aggregate_metrics=Trueand- aggregate_metrics=Falseoptions in- backtest().
 - log_backtest_run(metrics: DataFrame, forecast: DataFrame, test: DataFrame)[source]#
- Backtest metrics from one fold to logger. 
 - set_params(**params: dict) Self[source]#
- Return new object instance with modified parameters. - Method also allows to change parameters of nested objects within the current object. For example, it is possible to change parameters of a - modelin a- Pipeline.- Nested parameters are expected to be in a - <component_1>.<...>.<parameter>form, where components are separated by a dot.- Parameters:
- **params (dict) – Estimator parameters 
- Returns:
- New instance with changed parameters 
- Return type:
- Self 
 - Examples - >>> from etna.pipeline import Pipeline >>> from etna.models import NaiveModel >>> from etna.transforms import AddConstTransform >>> model = NaiveModel(lag=1) >>> transforms = [AddConstTransform(in_column="target", value=1)] >>> pipeline = Pipeline(model, transforms=transforms, horizon=3) >>> pipeline.set_params(**{"model.lag": 3, "transforms.0.value": 2}) Pipeline(model = NaiveModel(lag = 3, ), transforms = [AddConstTransform(in_column = 'target', value = 2, inplace = True, out_column = None, )], horizon = 3, )