etna.transforms.ModelDecomposeTransform#
- class ModelDecomposeTransform(model: NonPredictionIntervalContextIgnorantAbstractModel | NonPredictionIntervalContextRequiredAbstractModel | PredictionIntervalContextIgnorantAbstractModel | PredictionIntervalContextRequiredAbstractModel, in_column: str = 'target', residuals: bool = False)[source]#
- Bases: - IrreversibleTransform- Transform that uses ETNA models to estimate series decomposition. - Note - This transform decomposes only in-sample data. For the future timestamps it produces - NaN. For the dataset to be transformed, it should contain at least the minimum amount of in-sample timestamps that are required by the model.- Init - ModelDecomposeTransform.- Parameters:
- model (NonPredictionIntervalContextIgnorantAbstractModel | NonPredictionIntervalContextRequiredAbstractModel | PredictionIntervalContextIgnorantAbstractModel | PredictionIntervalContextRequiredAbstractModel) – - instance of the model to use for the decomposition. Note that not all models are supported. Possible selections are: - HoltWintersModel
- ProphetModel
- SARIMAXModel
- DeadlineMovingAverageModel
- SeasonalMovingAverageModel
- BATSModel
- TBATSModel
 - Currently, only the specified series itself is used for model fitting. There is no way to add additional features/regressors to the decomposition model. 
- in_column (str) – name of the processed column. 
- residuals (bool) – whether to add residuals after decomposition. This guarantees that all components, including residuals, sum up to the series. 
 
 - Warning - Options for parameter - model- etna.models.BATSModeland- etna.models.TBATSModelmay result in different components set compared to the initialization parameters. In such case, a corresponding warning would be raised.- Methods - fit(ts)- Fit the transform and the decomposition model. - fit_transform(ts)- Fit and transform TSDataset. - Return the list with regressors created by the transform. - Inverse transform TSDataset. - load(path)- Load an object. - Get grid for tuning hyperparameters. - save(path)- Save the object. - set_params(**params)- Return new object instance with modified parameters. - to_dict()- Collect all information about etna object in dict. - transform(ts)- Transform - TSDatasetinplace.- Attributes - This class stores its - __init__parameters as attributes.- fit(ts: TSDataset) ModelDecomposeTransform[source]#
- Fit the transform and the decomposition model. - Parameters:
- ts (TSDataset) – dataset to fit the transform on. 
- Returns:
- the fitted transform instance. 
- Return type:
 
 - fit_transform(ts: TSDataset) TSDataset[source]#
- Fit and transform TSDataset. - May be reimplemented. But it is not recommended. 
 - classmethod load(path: Path) Self[source]#
- Load an object. - Warning - This method uses - dillmodule which is not secure. It is possible to construct malicious data which will execute arbitrary code during loading. Never load data that could have come from an untrusted source, or that could have been tampered with.- Parameters:
- path (Path) – Path to load object from. 
- Returns:
- Loaded object. 
- Return type:
- Self 
 
 - params_to_tune() Dict[str, BaseDistribution][source]#
- Get grid for tuning hyperparameters. - This is default implementation with empty grid. - Returns:
- Empty grid. 
- Return type:
 
 - set_params(**params: dict) Self[source]#
- Return new object instance with modified parameters. - Method also allows to change parameters of nested objects within the current object. For example, it is possible to change parameters of a - modelin a- Pipeline.- Nested parameters are expected to be in a - <component_1>.<...>.<parameter>form, where components are separated by a dot.- Parameters:
- **params (dict) – Estimator parameters 
- Returns:
- New instance with changed parameters 
- Return type:
- Self 
 - Examples - >>> from etna.pipeline import Pipeline >>> from etna.models import NaiveModel >>> from etna.transforms import AddConstTransform >>> model = NaiveModel(lag=1) >>> transforms = [AddConstTransform(in_column="target", value=1)] >>> pipeline = Pipeline(model, transforms=transforms, horizon=3) >>> pipeline.set_params(**{"model.lag": 3, "transforms.0.value": 2}) Pipeline(model = NaiveModel(lag = 3, ), transforms = [AddConstTransform(in_column = 'target', value = 2, inplace = True, out_column = None, )], horizon = 3, )