etna.models.nn.deepstate.DaylySeasonalitySSM#
- class DaylySeasonalitySSM[source]#
- Bases: - SeasonalitySSM- Class for Daily Seasonality State Space Model. - Note - This class requires - torchextension to be installed. Read more about this at installation page.- Create instance of SeasonalitySSM. - Parameters:
- num_seasons – Number of seasons in the considered seasonality period. 
 - Methods - emission_coeff(datetime_index)- Emission coefficient matrix. - generate_datetime_index(timestamps)- Generate datetime index to use in the State Space Model. - Generate datetime index to use in the State Space Model. - innovation_coeff(datetime_index)- Innovation coefficient matrix. - Dimension of the latent space. - set_params(**params)- Return new object instance with modified parameters. - to_dict()- Collect all information about etna object in dict. - transition_coeff(datetime_index)- Transition coefficient matrix. - Attributes - This class stores its - __init__parameters as attributes.- generate_datetime_index(timestamps: ndarray) ndarray[source]#
- Generate datetime index to use in the State Space Model. 
 - get_timestamp_transform(x: Timestamp)[source]#
- Generate datetime index to use in the State Space Model. - Parameters:
- x (Timestamp) – timestamp 
- Returns:
- Datetime index for State Space Model. 
 
 - latent_dim() int[source]#
- Dimension of the latent space. - Returns:
- Dimension of the latent space. 
- Return type:
 
 - set_params(**params: dict) Self[source]#
- Return new object instance with modified parameters. - Method also allows to change parameters of nested objects within the current object. For example, it is possible to change parameters of a - modelin a- Pipeline.- Nested parameters are expected to be in a - <component_1>.<...>.<parameter>form, where components are separated by a dot.- Parameters:
- **params (dict) – Estimator parameters 
- Returns:
- New instance with changed parameters 
- Return type:
- Self 
 - Examples - >>> from etna.pipeline import Pipeline >>> from etna.models import NaiveModel >>> from etna.transforms import AddConstTransform >>> model = NaiveModel(lag=1) >>> transforms = [AddConstTransform(in_column="target", value=1)] >>> pipeline = Pipeline(model, transforms=transforms, horizon=3) >>> pipeline.set_params(**{"model.lag": 3, "transforms.0.value": 2}) Pipeline(model = NaiveModel(lag = 3, ), transforms = [AddConstTransform(in_column = 'target', value = 2, inplace = True, out_column = None, )], horizon = 3, )