etna.metrics.MetricWithMissingHandling#
- class MetricWithMissingHandling(metric_fn: MetricFunction, mode: str = 'per-segment', metric_fn_signature: str = 'array_to_scalar', missing_mode: str = 'error', **kwargs)[source]#
Bases:
MetricBase class for all the multi-segment metrics that can handle missing values.
Init Metric.
- Parameters:
metric_fn (MetricFunction) – functional metric
mode (str) –
“macro” or “per-segment”, way to aggregate metric values over segments:
if “macro” computes average value
if “per-segment” – does not aggregate metrics
metric_fn_signature (str) – type of signature of
metric_fn(seeMetricFunctionSignature)missing_mode (str) – mode of handling missing values (see
MetricMissingMode)kwargs – functional metric’s params
- Raises:
NotImplementedError: – If non-existent
modeis used.NotImplementedError: – If non-existent
metric_fn_signatureis used.NotImplementedError: – If non-existent
missing_modeis used.
Methods
set_params(**params)Return new object instance with modified parameters.
to_dict()Collect all information about etna object in dict.
__call__(y_true, y_pred)Compute metric's value with
y_trueandy_pred.Attributes
This class stores its
__init__parameters as attributes.Whether higher metric value is better.
Name of the metric for representation.
- __call__(y_true: TSDataset, y_pred: TSDataset) float | None | Dict[str, float | None][source]#
Compute metric’s value with
y_trueandy_pred.Notes
Note that if
y_trueandy_predare not sorted Metric will sort it anyway
- set_params(**params: dict) Self[source]#
Return new object instance with modified parameters.
Method also allows to change parameters of nested objects within the current object. For example, it is possible to change parameters of a
modelin aPipeline.Nested parameters are expected to be in a
<component_1>.<...>.<parameter>form, where components are separated by a dot.- Parameters:
**params (dict) – Estimator parameters
- Returns:
New instance with changed parameters
- Return type:
Self
Examples
>>> from etna.pipeline import Pipeline >>> from etna.models import NaiveModel >>> from etna.transforms import AddConstTransform >>> model = NaiveModel(lag=1) >>> transforms = [AddConstTransform(in_column="target", value=1)] >>> pipeline = Pipeline(model, transforms=transforms, horizon=3) >>> pipeline.set_params(**{"model.lag": 3, "transforms.0.value": 2}) Pipeline(model = NaiveModel(lag = 3, ), transforms = [AddConstTransform(in_column = 'target', value = 2, inplace = True, out_column = None, )], horizon = 3, )