etna.pipeline.BasePipeline#
- class BasePipeline(horizon: int)[source]#
Bases:
AbstractPipeline
,BaseMixin
Base class for pipeline.
Create instance of BasePipeline with given parameters.
- Parameters:
horizon (int) – Number of timestamps in the future for forecasting
Methods
backtest
(ts, metrics[, n_folds, mode, ...])Run backtest with the pipeline.
fit
(ts[, save_ts])Fit the Pipeline.
forecast
([ts, prediction_interval, ...])Make a forecast of the next points of a dataset.
get_historical_forecasts
(ts[, n_folds, ...])Estimate forecast for each fold on the historical dataset.
load
(path)Load an object.
Get hyperparameter grid to tune.
predict
(ts[, start_timestamp, ...])Make in-sample predictions on dataset in a given range.
save
(path)Save the object.
set_params
(**params)Return new object instance with modified parameters.
to_dict
()Collect all information about etna object in dict.
Attributes
This class stores its
__init__
parameters as attributes.- backtest(ts: TSDataset, metrics: List[Metric], n_folds: int | List[FoldMask] = 5, mode: str | None = None, aggregate_metrics: bool = False, n_jobs: int = 1, refit: bool | int = True, stride: int | None = None, joblib_params: Dict[str, Any] | None = None, forecast_params: Dict[str, Any] | None = None) Tuple[DataFrame, DataFrame, DataFrame] [source]#
Run backtest with the pipeline.
If
refit != True
and some component of the pipeline doesn’t support forecasting with gap, this component will raise an exception.- Parameters:
ts (TSDataset) – Dataset to fit models in backtest
metrics (List[Metric]) – List of metrics to compute for each fold
n_folds (int | List[FoldMask]) – Number of folds or the list of fold masks
mode (str | None) – Train generation policy: ‘expand’ or ‘constant’. Works only if
n_folds
is integer. By default, is set to ‘expand’.aggregate_metrics (bool) – If True aggregate metrics above folds, return raw metrics otherwise
n_jobs (int) – Number of jobs to run in parallel
Determines how often pipeline should be retrained during iteration over folds.
If
True
: pipeline is retrained on each fold.If
False
: pipeline is trained only on the first fold.If
value: int
: pipeline is trained everyvalue
folds starting from the first.
stride (int | None) – Number of points between folds. Works only if
n_folds
is integer. By default, is set tohorizon
.joblib_params (Dict[str, Any] | None) – Additional parameters for
joblib.Parallel
forecast_params (Dict[str, Any] | None) – Additional parameters for
forecast()
- Returns:
Metrics dataframe, forecast dataframe and dataframe with information about folds
- Return type:
metrics_df, forecast_df, fold_info_df
- Raises:
ValueError: – If
mode
is set whenn_folds
areList[FoldMask]
.ValueError: – If
stride
is set whenn_folds
areList[FoldMask]
.
- forecast(ts: TSDataset | None = None, prediction_interval: bool = False, quantiles: Sequence[float] = (0.025, 0.975), n_folds: int = 3, return_components: bool = False) TSDataset [source]#
Make a forecast of the next points of a dataset.
The result of forecasting starts from the last point of
ts
, not including it.- Parameters:
ts (TSDataset | None) – Dataset to forecast. If not given, dataset given during
fit()
is used.prediction_interval (bool) – If True returns prediction interval for forecast
quantiles (Sequence[float]) – Levels of prediction distribution. By default 2.5% and 97.5% taken to form a 95% prediction interval
n_folds (int) – Number of folds to use in the backtest for prediction interval estimation
return_components (bool) – If True additionally returns forecast components
- Returns:
Dataset with predictions
- Raises:
NotImplementedError: – Adding target components is not currently implemented
- Return type:
- get_historical_forecasts(ts: TSDataset, n_folds: int | List[FoldMask] = 5, mode: str | None = None, n_jobs: int = 1, refit: bool | int = True, stride: int | None = None, joblib_params: Dict[str, Any] | None = None, forecast_params: Dict[str, Any] | None = None) DataFrame [source]#
Estimate forecast for each fold on the historical dataset.
If
refit != True
and some component of the pipeline doesn’t support forecasting with gap, this component will raise an exception.- Parameters:
ts (TSDataset) – Dataset to fit models in backtest
n_folds (int | List[FoldMask]) – Number of folds or the list of fold masks
mode (str | None) – Train generation policy: ‘expand’ or ‘constant’. Works only if
n_folds
is integer. By default, is set to ‘expand’.n_jobs (int) – Number of jobs to run in parallel
Determines how often pipeline should be retrained during iteration over folds.
If
True
: pipeline is retrained on each fold.If
False
: pipeline is trained only on the first fold.If
value: int
: pipeline is trained everyvalue
folds starting from the first.
stride (int | None) – Number of points between folds. Works only if
n_folds
is integer. By default, is set tohorizon
.joblib_params (Dict[str, Any] | None) – Additional parameters for
joblib.Parallel
forecast_params (Dict[str, Any] | None) – Additional parameters for
forecast()
- Returns:
Forecast dataframe
- Raises:
ValueError: – If
mode
is set whenn_folds
areList[FoldMask]
.ValueError: – If
stride
is set whenn_folds
areList[FoldMask]
.
- Return type:
- abstract classmethod load(path: Path) Self [source]#
Load an object.
- Parameters:
path (Path) – Path to load object from.
- Return type:
Self
- abstract params_to_tune() Dict[str, BaseDistribution] [source]#
Get hyperparameter grid to tune.
- Returns:
Grid with hyperparameters.
- Return type:
- predict(ts: TSDataset, start_timestamp: Timestamp | int | str | None = None, end_timestamp: Timestamp | int | str | None = None, prediction_interval: bool = False, quantiles: Sequence[float] = (0.025, 0.975), return_components: bool = False) TSDataset [source]#
Make in-sample predictions on dataset in a given range.
Currently, in situation when segments start with different timestamps we only guarantee to work with
start_timestamp
>= beginning of all segments.Parameters
start_timestamp
andend_timestamp
of typestr
are converted intopd.Timestamp
.- Parameters:
ts (TSDataset) – Dataset to make predictions on.
start_timestamp (Timestamp | int | str | None) – First timestamp of prediction range to return, should be >= than first timestamp in
ts
; expected that beginning of each segment <=start_timestamp
; if isn’t set the first timestamp where each segment began is taken.end_timestamp (Timestamp | int | str | None) – Last timestamp of prediction range to return; if isn’t set the last timestamp of
ts
is taken. Expected that value is less or equal to the last timestamp ints
.prediction_interval (bool) – If True returns prediction interval for forecast.
quantiles (Sequence[float]) – Levels of prediction distribution. By default 2.5% and 97.5% taken to form a 95% prediction interval.
return_components (bool) – If True additionally returns forecast components
- Returns:
Dataset with predictions in
[start_timestamp, end_timestamp]
range.- Raises:
ValueError – Incorrect type of
start_timestamp
orend_timestamp
is used according tots.freq
ValueError: – Value of
end_timestamp
is less thanstart_timestamp
.ValueError: – Value of
start_timestamp
goes before point where each segment started.ValueError: – Value of
end_timestamp
goes after the last timestamp.NotImplementedError: – Adding target components is not currently implemented
- Return type:
- abstract save(path: Path)[source]#
Save the object.
- Parameters:
path (Path) – Path to save object to.
- set_params(**params: dict) Self [source]#
Return new object instance with modified parameters.
Method also allows to change parameters of nested objects within the current object. For example, it is possible to change parameters of a
model
in aPipeline
.Nested parameters are expected to be in a
<component_1>.<...>.<parameter>
form, where components are separated by a dot.- Parameters:
**params (dict) – Estimator parameters
- Returns:
New instance with changed parameters
- Return type:
Self
Examples
>>> from etna.pipeline import Pipeline >>> from etna.models import NaiveModel >>> from etna.transforms import AddConstTransform >>> model = NaiveModel(lag=1) >>> transforms = [AddConstTransform(in_column="target", value=1)] >>> pipeline = Pipeline(model, transforms=transforms, horizon=3) >>> pipeline.set_params(**{"model.lag": 3, "transforms.0.value": 2}) Pipeline(model = NaiveModel(lag = 3, ), transforms = [AddConstTransform(in_column = 'target', value = 2, inplace = True, out_column = None, )], horizon = 3, )