etna.clustering.DistanceMatrix#
- class DistanceMatrix(distance: Distance)[source]#
- Bases: - BaseMixin- DistanceMatrix computes distance matrix from TSDataset. - Init DistanceMatrix. - Parameters:
- distance (Distance) – class for distance measurement 
 - Methods - fit(ts)- Fit distance matrix: get timeseries from ts and compute pairwise distances. - fit_predict(ts)- Compute distance matrix and return it. - predict()- Get distance matrix. - set_params(**params)- Return new object instance with modified parameters. - to_dict()- Collect all information about etna object in dict. - Attributes - This class stores its - __init__parameters as attributes.- fit(ts: TSDataset) DistanceMatrix[source]#
- Fit distance matrix: get timeseries from ts and compute pairwise distances. - Parameters:
- ts (TSDataset) – TSDataset with timeseries 
- Returns:
- fitted DistanceMatrix object 
- Return type:
- self 
 
 - fit_predict(ts: TSDataset) ndarray[source]#
- Compute distance matrix and return it. - Parameters:
- ts (TSDataset) – TSDataset with timeseries to compute matrix with 
- Returns:
- 2D array with distances between series 
- Return type:
- np.ndarray 
 
 - predict() ndarray[source]#
- Get distance matrix. - Returns:
- 2D array with distances between series 
- Return type:
- np.ndarray 
 
 - set_params(**params: dict) Self[source]#
- Return new object instance with modified parameters. - Method also allows to change parameters of nested objects within the current object. For example, it is possible to change parameters of a - modelin a- Pipeline.- Nested parameters are expected to be in a - <component_1>.<...>.<parameter>form, where components are separated by a dot.- Parameters:
- **params (dict) – Estimator parameters 
- Returns:
- New instance with changed parameters 
- Return type:
- Self 
 - Examples - >>> from etna.pipeline import Pipeline >>> from etna.models import NaiveModel >>> from etna.transforms import AddConstTransform >>> model = model=NaiveModel(lag=1) >>> transforms = [AddConstTransform(in_column="target", value=1)] >>> pipeline = Pipeline(model, transforms=transforms, horizon=3) >>> pipeline.set_params(**{"model.lag": 3, "transforms.0.value": 2}) Pipeline(model = NaiveModel(lag = 3, ), transforms = [AddConstTransform(in_column = 'target', value = 2, inplace = True, out_column = None, )], horizon = 3, )