etna.models.StatsForecastARIMAModel#
- class StatsForecastARIMAModel(order: Tuple[int, int, int] = (0, 0, 0), season_length: int = 1, seasonal_order: Tuple[int, int, int] = (0, 0, 0), **kwargs)[source]#
- Bases: - PerSegmentModelMixin,- PredictionIntervalContextIgnorantModelMixin,- PredictionIntervalContextIgnorantAbstractModel- Class for holding - statsforecast.models.ARIMA.- Documentation for the underlying model. - Note - This model requires - statsforecastextension to be installed. Read more about this at installation instruction.- Init model with given params. - Parameters:
- order (Tuple[int, int, int]) – A specification of the non-seasonal part of the ARIMA model: the three components (p, d, q) are the AR order, the degree of differencing, and the MA order. 
- season_length (int) – Number of observations per unit of time. Ex: 24 Hourly data. 
- seasonal_order (Tuple[int, int, int]) – A specification of the seasonal part of the ARIMA model. (P, D, Q) for the AR order, the degree of differencing, the MA order. 
- **kwargs – Additional parameters for - statsforecast.models.ARIMA.
 
 - Methods - fit(ts)- Fit model. - forecast(ts[, prediction_interval, ...])- Make predictions. - Get internal models that are used inside etna class. - load(path)- Load an object. - Get default grid for tuning hyperparameters. - predict(ts[, prediction_interval, ...])- Make predictions with using true values as autoregression context if possible (teacher forcing). - save(path)- Save the object. - set_params(**params)- Return new object instance with modified parameters. - to_dict()- Collect all information about etna object in dict. - Attributes - This class stores its - __init__parameters as attributes.- Context size of the model. - fit(ts: TSDataset) PerSegmentModelMixin[source]#
- Fit model. - Parameters:
- ts (TSDataset) – Dataset with features 
- Returns:
- Model after fit 
- Return type:
- PerSegmentModelMixin 
 
 - forecast(ts: TSDataset, prediction_interval: bool = False, quantiles: Sequence[float] = (0.025, 0.975), return_components: bool = False) TSDataset[source]#
- Make predictions. - Parameters:
- ts (TSDataset) – Dataset with features 
- prediction_interval (bool) – If True returns prediction interval for forecast 
- quantiles (Sequence[float]) – Levels of prediction distribution. By default 2.5% and 97.5% are taken to form a 95% prediction interval 
- return_components (bool) – If True additionally returns forecast components 
 
- Returns:
- Dataset with predictions 
- Return type:
 
 - get_model() Dict[str, Any][source]#
- Get internal models that are used inside etna class. - Internal model is a model that is used inside etna to forecast segments, e.g. - catboost.CatBoostRegressoror- sklearn.linear_model.Ridge.
 - classmethod load(path: Path) Self[source]#
- Load an object. - Warning - This method uses - dillmodule which is not secure. It is possible to construct malicious data which will execute arbitrary code during loading. Never load data that could have come from an untrusted source, or that could have been tampered with.- Parameters:
- path (Path) – Path to load object from. 
- Returns:
- Loaded object. 
- Return type:
- Self 
 
 - params_to_tune() Dict[str, BaseDistribution][source]#
- Get default grid for tuning hyperparameters. - This grid tunes parameters: - order.0,- order.1,- order.2. If- self.season_lengthis greater than one, then it also tunes parameters:- seasonal_order.0,- seasonal_order.1,- seasonal_order.2. Other parameters are expected to be set by the user.- Returns:
- Grid to tune. 
- Return type:
 
 - predict(ts: TSDataset, prediction_interval: bool = False, quantiles: Sequence[float] = (0.025, 0.975), return_components: bool = False) TSDataset[source]#
- Make predictions with using true values as autoregression context if possible (teacher forcing). - Parameters:
- ts (TSDataset) – Dataset with features 
- prediction_interval (bool) – If True returns prediction interval for forecast 
- quantiles (Sequence[float]) – Levels of prediction distribution. By default 2.5% and 97.5% are taken to form a 95% prediction interval 
- return_components (bool) – If True additionally returns prediction components 
 
- Returns:
- Dataset with predictions 
- Return type:
 
 - set_params(**params: dict) Self[source]#
- Return new object instance with modified parameters. - Method also allows to change parameters of nested objects within the current object. For example, it is possible to change parameters of a - modelin a- Pipeline.- Nested parameters are expected to be in a - <component_1>.<...>.<parameter>form, where components are separated by a dot.- Parameters:
- **params (dict) – Estimator parameters 
- Returns:
- New instance with changed parameters 
- Return type:
- Self 
 - Examples - >>> from etna.pipeline import Pipeline >>> from etna.models import NaiveModel >>> from etna.transforms import AddConstTransform >>> model = model=NaiveModel(lag=1) >>> transforms = [AddConstTransform(in_column="target", value=1)] >>> pipeline = Pipeline(model, transforms=transforms, horizon=3) >>> pipeline.set_params(**{"model.lag": 3, "transforms.0.value": 2}) Pipeline(model = NaiveModel(lag = 3, ), transforms = [AddConstTransform(in_column = 'target', value = 2, inplace = True, out_column = None, )], horizon = 3, )