etna.transforms.ResampleWithDistributionTransform#
- class ResampleWithDistributionTransform(in_column: str, distribution_column: str, inplace: bool = True, out_column: str | None = None)[source]#
- Bases: - IrreversiblePerSegmentWrapper- ResampleWithDistributionTransform resamples the given column using the distribution of the other column. - Warning - This transform can suffer from look-ahead bias. For transforming data at some timestamp it uses information from the whole train part. - Init ResampleWithDistributionTransform. - Parameters:
- in_column (str) – name of column to be resampled 
- distribution_column (str) – name of column to obtain the distribution from 
- inplace (bool) – - if True, apply resampling inplace to - in_column,
- if False, add transformed column to dataset 
 
- out_column (str | None) – name of added column. If not given, use - self.__repr__()
 
 - Methods - fit(ts)- Fit the transform. - fit_transform(ts)- Fit and transform TSDataset. - Return the list with regressors created by the transform. - Inverse transform TSDataset. - load(path)- Load an object. - Get grid for tuning hyperparameters. - save(path)- Save the object. - set_params(**params)- Return new object instance with modified parameters. - to_dict()- Collect all information about etna object in dict. - transform(ts)- Transform TSDataset inplace. - Attributes - This class stores its - __init__parameters as attributes.- fit(ts: TSDataset) ResampleWithDistributionTransform[source]#
- Fit the transform. - Parameters:
- ts (TSDataset) – 
- Return type:
 
 - fit_transform(ts: TSDataset) TSDataset[source]#
- Fit and transform TSDataset. - May be reimplemented. But it is not recommended. 
 - classmethod load(path: Path) Self[source]#
- Load an object. - Warning - This method uses - dillmodule which is not secure. It is possible to construct malicious data which will execute arbitrary code during loading. Never load data that could have come from an untrusted source, or that could have been tampered with.- Parameters:
- path (Path) – Path to load object from. 
- Returns:
- Loaded object. 
- Return type:
- Self 
 
 - params_to_tune() Dict[str, BaseDistribution][source]#
- Get grid for tuning hyperparameters. - This is default implementation with empty grid. - Returns:
- Empty grid. 
- Return type:
 
 - set_params(**params: dict) Self[source]#
- Return new object instance with modified parameters. - Method also allows to change parameters of nested objects within the current object. For example, it is possible to change parameters of a - modelin a- Pipeline.- Nested parameters are expected to be in a - <component_1>.<...>.<parameter>form, where components are separated by a dot.- Parameters:
- **params (dict) – Estimator parameters 
- Returns:
- New instance with changed parameters 
- Return type:
- Self 
 - Examples - >>> from etna.pipeline import Pipeline >>> from etna.models import NaiveModel >>> from etna.transforms import AddConstTransform >>> model = model=NaiveModel(lag=1) >>> transforms = [AddConstTransform(in_column="target", value=1)] >>> pipeline = Pipeline(model, transforms=transforms, horizon=3) >>> pipeline.set_params(**{"model.lag": 3, "transforms.0.value": 2}) Pipeline(model = NaiveModel(lag = 3, ), transforms = [AddConstTransform(in_column = 'target', value = 2, inplace = True, out_column = None, )], horizon = 3, )