etna.transforms.decomposition.SklearnRegressionPerIntervalModel#
- class SklearnRegressionPerIntervalModel(model: RegressorMixin | None = None)[source]#
- Bases: - PerIntervalModel- SklearnRegressionPerIntervalModel applies PerIntervalModel interface for sklearn-like regression models. - Init SklearnPerIntervalModel. - Parameters:
- model (RegressorMixin | None) – model with sklearn interface to use for interval processing 
 - Methods - fit(features, target, *args, **kwargs)- Fit model with given features and targets. - predict(features, *args, **kwargs)- Make prediction for given features. - set_params(**params)- Return new object instance with modified parameters. - to_dict()- Collect all information about etna object in dict. - Attributes - This class stores its - __init__parameters as attributes.- fit(features: ndarray, target: ndarray, *args, **kwargs) SklearnRegressionPerIntervalModel[source]#
- Fit model with given features and targets. 
 - predict(features: ndarray, *args, **kwargs) ndarray[source]#
- Make prediction for given features. - Parameters:
- features (ndarray) – features to make prediction for 
- Returns:
- model’s prediction for given features 
- Return type:
- prediction 
 
 - set_params(**params: dict) Self[source]#
- Return new object instance with modified parameters. - Method also allows to change parameters of nested objects within the current object. For example, it is possible to change parameters of a - modelin a- Pipeline.- Nested parameters are expected to be in a - <component_1>.<...>.<parameter>form, where components are separated by a dot.- Parameters:
- **params (dict) – Estimator parameters 
- Returns:
- New instance with changed parameters 
- Return type:
- Self 
 - Examples - >>> from etna.pipeline import Pipeline >>> from etna.models import NaiveModel >>> from etna.transforms import AddConstTransform >>> model = model=NaiveModel(lag=1) >>> transforms = [AddConstTransform(in_column="target", value=1)] >>> pipeline = Pipeline(model, transforms=transforms, horizon=3) >>> pipeline.set_params(**{"model.lag": 3, "transforms.0.value": 2}) Pipeline(model = NaiveModel(lag = 3, ), transforms = [AddConstTransform(in_column = 'target', value = 2, inplace = True, out_column = None, )], horizon = 3, )