etna.transforms.decomposition.SklearnPreprocessingPerIntervalModel#
- class SklearnPreprocessingPerIntervalModel(preprocessing: TransformerMixin)[source]#
- Bases: - PerIntervalModel- SklearnPreprocessingPerIntervalModel applies PerIntervalModel interface for sklearn preprocessings. - Methods - fit(features, target, *args, **kwargs)- Fit preprocessing with given features and targets. - inverse(features)- Apply inverse transformation. - predict(features, *args, **kwargs)- Apply preprocessing to given features. - set_params(**params)- Return new object instance with modified parameters. - to_dict()- Collect all information about etna object in dict. - Attributes - This class stores its - __init__parameters as attributes.- Parameters:
- preprocessing (TransformerMixin) – 
 - fit(features: ndarray, target: ndarray, *args, **kwargs) SklearnPreprocessingPerIntervalModel[source]#
- Fit preprocessing with given features and targets. 
 - inverse(features: ndarray) ndarray[source]#
- Apply inverse transformation. - Parameters:
- features (ndarray) – features to apply inverse transformation 
- Returns:
- features after inverse transformation 
- Return type:
- inversed data 
 
 - predict(features: ndarray, *args, **kwargs) ndarray[source]#
- Apply preprocessing to given features. - Parameters:
- features (ndarray) – features to make preprocessing for 
- Returns:
- preprocessing’s prediction for given features 
- Return type:
- prediction 
 
 - set_params(**params: dict) Self[source]#
- Return new object instance with modified parameters. - Method also allows to change parameters of nested objects within the current object. For example, it is possible to change parameters of a - modelin a- Pipeline.- Nested parameters are expected to be in a - <component_1>.<...>.<parameter>form, where components are separated by a dot.- Parameters:
- **params (dict) – Estimator parameters 
- Returns:
- New instance with changed parameters 
- Return type:
- Self 
 - Examples - >>> from etna.pipeline import Pipeline >>> from etna.models import NaiveModel >>> from etna.transforms import AddConstTransform >>> model = model=NaiveModel(lag=1) >>> transforms = [AddConstTransform(in_column="target", value=1)] >>> pipeline = Pipeline(model, transforms=transforms, horizon=3) >>> pipeline.set_params(**{"model.lag": 3, "transforms.0.value": 2}) Pipeline(model = NaiveModel(lag = 3, ), transforms = [AddConstTransform(in_column = 'target', value = 2, inplace = True, out_column = None, )], horizon = 3, )