etna.reconciliation.BaseReconciliator#
- class BaseReconciliator(target_level: str, source_level: str)[source]#
- 
Base class to hold reconciliation methods. Init BaseReconciliator. - Parameters:
 Methods aggregate(ts)Aggregate the dataset to the source_level.fit(ts)Fit the reconciliator parameters. reconcile(ts)Reconcile the forecasts in the dataset. set_params(**params)Return new object instance with modified parameters. to_dict()Collect all information about etna object in dict. Attributes This class stores its __init__parameters as attributes.- abstract fit(ts: TSDataset) BaseReconciliator[source]#
- Fit the reconciliator parameters. - Parameters:
- ts (TSDataset) – TSDataset on the level which is lower or equal to - target_level,- source_level.
- Returns:
- Fitted instance of reconciliator. 
- Return type:
 
 - set_params(**params: dict) Self[source]#
- Return new object instance with modified parameters. - Method also allows to change parameters of nested objects within the current object. For example, it is possible to change parameters of a - modelin a- Pipeline.- Nested parameters are expected to be in a - <component_1>.<...>.<parameter>form, where components are separated by a dot.- Parameters:
- **params (dict) – Estimator parameters 
- Returns:
- New instance with changed parameters 
- Return type:
- Self 
 - Examples - >>> from etna.pipeline import Pipeline >>> from etna.models import NaiveModel >>> from etna.transforms import AddConstTransform >>> model = model=NaiveModel(lag=1) >>> transforms = [AddConstTransform(in_column="target", value=1)] >>> pipeline = Pipeline(model, transforms=transforms, horizon=3) >>> pipeline.set_params(**{"model.lag": 3, "transforms.0.value": 2}) Pipeline(model = NaiveModel(lag = 3, ), transforms = [AddConstTransform(in_column = 'target', value = 2, inplace = True, out_column = None, )], horizon = 3, )