etna.analysis.StatisticsRelevanceTable#
- class StatisticsRelevanceTable[source]#
- Bases: - RelevanceTable- StatisticsRelevanceTable builds feature relevance table with tsfresh statistics. - Init RelevanceTable. - Parameters:
- greater_is_better – bool flag, if True the biggest value in relevance table corresponds to the most important exog feature 
 - __call__(df: DataFrame, df_exog: DataFrame, return_ranks: bool = False, **kwargs) DataFrame[source]#
- Compute feature relevance table with - get_statistics_relevance_table()method.- For each series in - dfcompute relevance of corresponding series in- df_exog.- Parameters:
- Returns:
- dataframe of shape n_segment x n_exog_series, - relevance_table[i][j]contains relevance of j-th df_exog series to i-th df series
- Return type:
- relevance table 
 
 - set_params(**params: dict) Self[source]#
- Return new object instance with modified parameters. - Method also allows to change parameters of nested objects within the current object. For example, it is possible to change parameters of a - modelin a- Pipeline.- Nested parameters are expected to be in a - <component_1>.<...>.<parameter>form, where components are separated by a dot.- Parameters:
- **params (dict) – Estimator parameters 
- Returns:
- New instance with changed parameters 
- Return type:
- Self 
 - Examples - >>> from etna.pipeline import Pipeline >>> from etna.models import NaiveModel >>> from etna.transforms import AddConstTransform >>> model = NaiveModel(lag=1) >>> transforms = [AddConstTransform(in_column="target", value=1)] >>> pipeline = Pipeline(model, transforms=transforms, horizon=3) >>> pipeline.set_params(**{"model.lag": 3, "transforms.0.value": 2}) Pipeline(model = NaiveModel(lag = 3, ), transforms = [AddConstTransform(in_column = 'target', value = 2, inplace = True, out_column = None, )], horizon = 3, )