etna.datasets.generate_ar_df#
- generate_ar_df(periods: int, start_time: ~pandas._libs.tslibs.timestamps.Timestamp | int | str | None = None, ar_coef: list | None = None, sigma: float = 1, n_segments: int = 1, freq: ~pandas._libs.tslibs.offsets.DateOffset | str | None = <Day>, random_seed: int = 1) DataFrame [source]#
Create DataFrame with AR process data.
- Parameters:
periods (int) – number of timestamps
ar_coef (list | None) – AR coefficients
sigma (float) – scale of AR noise
n_segments (int) – number of segments
freq (DateOffset | str | None) –
frequency of timestamps, possible values:
pandas.DateOffset
object for datetime timestamppandas offset aliases for datetime timestamp
None for integer timestamp
random_seed (int) – random seed
- Raises:
ValueError: – Incorrect type of
start_time
is used according tofreq
- Return type: