etna.transforms.IQROutlierTransform#
- class IQROutlierTransform(in_column: str = 'target', ignore_flag_column: str | None = None, window_size: int = 10, stride: int = 1, iqr_scale: float = 1.5, trend: bool = False, seasonality: bool = False, period: int | None = None, stl_params: Dict[str, Any] | None = None)[source]#
- Bases: - OutliersTransform- Transform that uses - get_anomalies_iqr()to find anomalies in data.- Create instance of - PredictionIntervalOutliersTransform.- Parameters:
- in_column (str) – Name of the column in which the anomaly is searching 
- ignore_flag_column (str | None) – Column name for skipping values from outlier check 
- window_size (int) – Number of points in the window 
- stride (int) – Offset between neighboring windows 
- iqr_scale (float) – Scaling parameter of the estimated interval 
- trend (bool) – Whether to remove trend from the series 
- seasonality (bool) – Whether to remove seasonality from the series 
- period (int | None) – Periodicity of the sequence for STL 
- stl_params (Dict[str, Any] | None) – Other parameters for STL. See - statsmodels.tsa.seasonal.STL
 
 - Methods - detect_outliers(ts)- Call - get_anomalies_iqr()function with self parameters.- fit(ts)- Fit the transform. - fit_transform(ts)- Fit and transform TSDataset. - Return the list with regressors created by the transform. - Inverse transform TSDataset. - load(path)- Load an object. - Get default grid for tuning hyperparameters. - save(path)- Save the object. - set_params(**params)- Return new object instance with modified parameters. - to_dict()- Collect all information about etna object in dict. - transform(ts)- Transform TSDataset inplace. - Attributes - This class stores its - __init__parameters as attributes.- detect_outliers(ts: TSDataset) Dict[str, Series][source]#
- Call - get_anomalies_iqr()function with self parameters.
 - fit(ts: TSDataset) OutliersTransform[source]#
- Fit the transform. - Parameters:
- ts (TSDataset) – Dataset to fit the transform on. 
- Returns:
- The fitted transform instance. 
- Return type:
- OutliersTransform 
 
 - fit_transform(ts: TSDataset) TSDataset[source]#
- Fit and transform TSDataset. - May be reimplemented. But it is not recommended. 
 - inverse_transform(ts: TSDataset) TSDataset[source]#
- Inverse transform TSDataset. - Apply the _inverse_transform method. 
 - classmethod load(path: Path) Self[source]#
- Load an object. - Warning - This method uses - dillmodule which is not secure. It is possible to construct malicious data which will execute arbitrary code during loading. Never load data that could have come from an untrusted source, or that could have been tampered with.- Parameters:
- path (Path) – Path to load object from. 
- Returns:
- Loaded object. 
- Return type:
- Self 
 
 - params_to_tune() Dict[str, BaseDistribution][source]#
- Get default grid for tuning hyperparameters. - This grid tunes parameters: - iqr_scale,- trend,- seasonality. Other parameters are expected to be set by the user.- Returns:
- Grid to tune. 
- Return type:
 
 - set_params(**params: dict) Self[source]#
- Return new object instance with modified parameters. - Method also allows to change parameters of nested objects within the current object. For example, it is possible to change parameters of a - modelin a- Pipeline.- Nested parameters are expected to be in a - <component_1>.<...>.<parameter>form, where components are separated by a dot.- Parameters:
- **params (dict) – Estimator parameters 
- Returns:
- New instance with changed parameters 
- Return type:
- Self 
 - Examples - >>> from etna.pipeline import Pipeline >>> from etna.models import NaiveModel >>> from etna.transforms import AddConstTransform >>> model = NaiveModel(lag=1) >>> transforms = [AddConstTransform(in_column="target", value=1)] >>> pipeline = Pipeline(model, transforms=transforms, horizon=3) >>> pipeline.set_params(**{"model.lag": 3, "transforms.0.value": 2}) Pipeline(model = NaiveModel(lag = 3, ), transforms = [AddConstTransform(in_column = 'target', value = 2, inplace = True, out_column = None, )], horizon = 3, )