etna.loggers.ClearMLLogger#
- class ClearMLLogger(project_name: str | None = None, task_name: str | None = None, task_name_prefix: str = '', task_type: str = 'training', tags: Sequence[str] | None = None, output_uri: str | bool | None = None, auto_connect_frameworks: bool | Mapping[str, bool | str | list] = False, auto_resource_monitoring: bool | Mapping[str, Any] = True, auto_connect_streams: bool | Mapping[str, bool] = True, plot: bool = True, table: bool = True, config: Dict[str, Any] | None = None, save_dir: str | None = None)[source]#
- Bases: - BaseLogger- ClearML logger. - Note - This logger requires - clearmlextension to be installed. Read more about this at installation page.- Warning - There is a possibility, that aggregated metrics charts may log incorrectly. For more details see issue. - Create instance of - ClearMLLogger.- Parameters:
- project_name (str | None) – The name of the project in which the experiment will be created. 
- task_name (str | None) – The name of Task (experiment). 
- task_name_prefix (str) – Prefix for the Task name field. 
- task_type (str) – The task type. 
- tags (Sequence[str] | None) – Add a list of tags (str) to the created Task. 
- output_uri (str | bool | None) – The default location for output models and other artifacts. 
- auto_connect_frameworks (bool | Mapping[str, bool | str | list]) – Automatically connect frameworks. 
- auto_resource_monitoring (bool | Mapping[str, Any]) – Automatically create machine resource monitoring plots. 
- auto_connect_streams (bool | Mapping[str, bool]) – Control the automatic logging of stdout and stderr. 
- plot (bool) – Indicator for making and sending plots. 
- table (bool) – Indicator for making and sending tables. 
- config (Dict[str, Any] | None) – A dictionary-like object for saving inputs to your job, like hyperparameters for a model or settings for a data preprocessing job. 
- save_dir (str | None) – Path to the directory for saving intermediate data. Used only when logging DL models. Defaults to - ./tb_save
 
 - Notes - For more details see documentation - Methods - finish_experiment(*args, **kwargs)- Finish - Task.- Reinit - Task.- log(msg, **kwargs)- Log any event. - log_backtest_metrics(ts, metrics_df, ...)- Write metrics to logger. - log_backtest_run(metrics, forecast, test)- Backtest metrics from one fold to logger. - set_params(**params)- Return new object instance with modified parameters. - start_experiment([job_type, group])- Start - Task.- to_dict()- Collect all information about etna object in dict. - Attributes - This class stores its - __init__parameters as attributes.- Pytorch lightning loggers. - log(msg: str | Dict[str, Any], **kwargs)[source]#
- Log any event. - This class logs string representation of a message. 
 - log_backtest_metrics(ts: TSDataset, metrics_df: DataFrame, forecast_ts_list: List[TSDataset], fold_info_df: DataFrame)[source]#
- Write metrics to logger. - Parameters:
 
 - log_backtest_run(metrics: DataFrame, forecast: DataFrame, test: DataFrame)[source]#
- Backtest metrics from one fold to logger. 
 - set_params(**params: dict) Self[source]#
- Return new object instance with modified parameters. - Method also allows to change parameters of nested objects within the current object. For example, it is possible to change parameters of a - modelin a- Pipeline.- Nested parameters are expected to be in a - <component_1>.<...>.<parameter>form, where components are separated by a dot.- Parameters:
- **params (dict) – Estimator parameters 
- Returns:
- New instance with changed parameters 
- Return type:
- Self 
 - Examples - >>> from etna.pipeline import Pipeline >>> from etna.models import NaiveModel >>> from etna.transforms import AddConstTransform >>> model = NaiveModel(lag=1) >>> transforms = [AddConstTransform(in_column="target", value=1)] >>> pipeline = Pipeline(model, transforms=transforms, horizon=3) >>> pipeline.set_params(**{"model.lag": 3, "transforms.0.value": 2}) Pipeline(model = NaiveModel(lag = 3, ), transforms = [AddConstTransform(in_column = 'target', value = 2, inplace = True, out_column = None, )], horizon = 3, )