etna.datasets.generate_hierarchical_df#
- generate_hierarchical_df(periods: int, n_segments: ~typing.List[int], freq: ~pandas._libs.tslibs.offsets.DateOffset | str | None = <Day>, start_time: ~pandas._libs.tslibs.timestamps.Timestamp | int | str | None = None, ar_coef: list | None = None, sigma: float = 1, random_seed: int = 1) DataFrame[source]#
- Create DataFrame with hierarchical structure and AR process data. - The hierarchical structure is generated as follows:
- Number of levels in the structure is the same as length of - n_segmentsparameter
- Each level contains the number of segments set in - n_segments
- Connections from parent to child level are generated randomly. 
 
 - Parameters:
- periods (int) – number of timestamps 
- freq (DateOffset | str | None) – - frequency of timestamps, possible values: - pandas.DateOffsetobject for datetime timestamp
- pandas offset aliases for datetime timestamp 
- None for integer timestamp 
 
- ar_coef (list | None) – AR coefficients 
- sigma (float) – scale of AR noise 
- random_seed (int) – random seed 
 
- Returns:
- DataFrame at the bottom level of the hierarchy 
- Raises:
- ValueError: – - n_segmentsis empty
- ValueError: – - n_segmentscontains not positive integers
- ValueError: – - n_segmentsrepresents not non-decreasing sequence
- ValueError: – Non-integer timestamp parameter is used for integer-indexed timestamp. 
 
- Return type: