etna.loggers._Logger#
- class _Logger[source]#
Bases:
BaseLogger
Composite for loggers.
Create instance for composite of loggers.
Methods
add
(logger)Add new logger.
Context manager to capture global logger.
disable
()Context manager for local logging disabling.
Finish experiment.
log
(msg, **kwargs)Log any event.
log_backtest_metrics
(ts, metrics_df, ...)Write metrics to logger.
log_backtest_run
(metrics, forecast, test)Backtest metrics from one fold to logger.
remove
(idx)Remove logger by identifier.
set_params
(**params)Return new object instance with modified parameters.
start_experiment
(*args, **kwargs)Start experiment.
to_dict
()Collect all information about etna object in dict.
Attributes
This class stores its
__init__
parameters as attributes.Pytorch lightning loggers.
- add(logger: BaseLogger) int [source]#
Add new logger.
- Parameters:
logger (BaseLogger) – logger to be added
- Returns:
result – identifier of added logger
- Return type:
- log_backtest_metrics(ts: TSDataset, metrics_df: DataFrame, forecast_df: DataFrame, fold_info_df: DataFrame)[source]#
Write metrics to logger.
- log_backtest_run(metrics: DataFrame, forecast: DataFrame, test: DataFrame)[source]#
Backtest metrics from one fold to logger.
- remove(idx: int)[source]#
Remove logger by identifier.
- Parameters:
idx (int) – identifier of added logger
- set_params(**params: dict) Self [source]#
Return new object instance with modified parameters.
Method also allows to change parameters of nested objects within the current object. For example, it is possible to change parameters of a
model
in aPipeline
.Nested parameters are expected to be in a
<component_1>.<...>.<parameter>
form, where components are separated by a dot.- Parameters:
**params (dict) – Estimator parameters
- Returns:
New instance with changed parameters
- Return type:
Self
Examples
>>> from etna.pipeline import Pipeline >>> from etna.models import NaiveModel >>> from etna.transforms import AddConstTransform >>> model = NaiveModel(lag=1) >>> transforms = [AddConstTransform(in_column="target", value=1)] >>> pipeline = Pipeline(model, transforms=transforms, horizon=3) >>> pipeline.set_params(**{"model.lag": 3, "transforms.0.value": 2}) Pipeline(model = NaiveModel(lag = 3, ), transforms = [AddConstTransform(in_column = 'target', value = 2, inplace = True, out_column = None, )], horizon = 3, )