etna.transforms.EmbeddingSegmentTransform#
- class EmbeddingSegmentTransform(in_columns: List[str], embedding_model: BaseEmbeddingModel, encoding_params: Dict[str, Any] | None = None, training_params: Dict[str, Any] | None = None, out_column: str = 'embedding_segment')[source]#
- Bases: - IrreversibleTransform- Create the constant embedding features using embedding model. - Init EmbeddingSegmentTransform. - Parameters:
- in_columns (List[str]) – Columns to use for creating embeddings 
- embedding_model (BaseEmbeddingModel) – Model to create the embeddings 
- encoding_params (Dict[str, Any] | None) – Parameters to use during encoding. Parameters for corresponding models can be found at embedding section. 
- training_params (Dict[str, Any] | None) – Parameters to use during training. Parameters for corresponding models can be found at embedding section. 
- out_column (str) – Prefix for output columns, the output columns format is ‘{out_column}_{i}’ 
 
 - Methods - fit(ts)- Fit the transform. - fit_transform(ts)- Fit and transform TSDataset. - Return the list with regressors created by the transform. - Inverse transform TSDataset. - load(path)- Load an object. - Get grid for tuning hyperparameters. - save(path)- Save the object. - set_params(**params)- Return new object instance with modified parameters. - to_dict()- Collect all information about etna object in dict. - transform(ts)- Transform TSDataset inplace. - Attributes - This class stores its - __init__parameters as attributes.- fit(ts: TSDataset) Transform[source]#
- Fit the transform. - Parameters:
- ts (TSDataset) – Dataset to fit the transform on. 
- Returns:
- The fitted transform instance. 
- Return type:
- Transform 
 
 - fit_transform(ts: TSDataset) TSDataset[source]#
- Fit and transform TSDataset. - May be reimplemented. But it is not recommended. 
 - classmethod load(path: Path) EmbeddingSegmentTransform[source]#
- Load an object. - Parameters:
- path (Path) – Path to load object from. 
- Returns:
- Loaded object. 
- Return type:
 
 - params_to_tune() Dict[str, BaseDistribution][source]#
- Get grid for tuning hyperparameters. - This is default implementation with empty grid. - Returns:
- Empty grid. 
- Return type:
 
 - set_params(**params: dict) Self[source]#
- Return new object instance with modified parameters. - Method also allows to change parameters of nested objects within the current object. For example, it is possible to change parameters of a - modelin a- Pipeline.- Nested parameters are expected to be in a - <component_1>.<...>.<parameter>form, where components are separated by a dot.- Parameters:
- **params (dict) – Estimator parameters 
- Returns:
- New instance with changed parameters 
- Return type:
- Self 
 - Examples - >>> from etna.pipeline import Pipeline >>> from etna.models import NaiveModel >>> from etna.transforms import AddConstTransform >>> model = NaiveModel(lag=1) >>> transforms = [AddConstTransform(in_column="target", value=1)] >>> pipeline = Pipeline(model, transforms=transforms, horizon=3) >>> pipeline.set_params(**{"model.lag": 3, "transforms.0.value": 2}) Pipeline(model = NaiveModel(lag = 3, ), transforms = [AddConstTransform(in_column = 'target', value = 2, inplace = True, out_column = None, )], horizon = 3, )