etna.metrics.Coverage#
- class Coverage(quantiles: Tuple[float, float] | None = None, mode: str = 'per-segment', upper_name: str | None = None, lower_name: str | None = None, missing_mode: str = 'error', **kwargs)[source]#
- Bases: - BaseIntervalsMetricWithMissingHandling- Coverage metric for prediction intervals - precenteage of samples in the interval - [lower quantile, upper quantile].\[Coverage(y\_true, y\_pred) = \frac{\sum_{i=1}^{n}{[ y\_true_i \ge y\_pred_i^{lower\_quantile}] * [y\_true_i \le y\_pred_i^{upper\_quantile}] }}{n}\]- This metric can handle missing values with parameter - missing_mode. If there are too many of them in- ignoremode, the result will be- None.- Notes - Works just if - quantilespresented in- y_pred- When - quantiles,- upper_nameand- lower_nameall set to- Nonethen 0.025 and 0.975 quantiles will be used.- Init metric. - Parameters:
- quantiles (Tuple[float, float] | None) – lower and upper quantiles 
- mode (str) – - “macro” or “per-segment”, way to aggregate metric values over segments: - if “macro” computes average value 
- if “per-segment” – does not aggregate metrics 
 
- upper_name (str | None) – name of column with upper border of the interval 
- lower_name (str | None) – name of column with lower border of the interval 
- missing_mode (str) – mode of handling missing values (see - MetricMissingMode)
- kwargs – metric’s computation arguments 
 
 - Methods - set_params(**params)- Return new object instance with modified parameters. - to_dict()- Collect all information about etna object in dict. - __call__(y_true, y_pred)- Compute metric's value with y_true and y_pred. - Attributes - This class stores its - __init__parameters as attributes.- Whether higher metric value is better. - Name of the metric for representation. - __call__(y_true: TSDataset, y_pred: TSDataset) float | None | Dict[str, float | None][source]#
- Compute metric’s value with y_true and y_pred. - Notes - Note that if y_true and y_pred are not sorted Metric will sort it anyway 
 - set_params(**params: dict) Self[source]#
- Return new object instance with modified parameters. - Method also allows to change parameters of nested objects within the current object. For example, it is possible to change parameters of a - modelin a- Pipeline.- Nested parameters are expected to be in a - <component_1>.<...>.<parameter>form, where components are separated by a dot.- Parameters:
- **params (dict) – Estimator parameters 
- Returns:
- New instance with changed parameters 
- Return type:
- Self 
 - Examples - >>> from etna.pipeline import Pipeline >>> from etna.models import NaiveModel >>> from etna.transforms import AddConstTransform >>> model = NaiveModel(lag=1) >>> transforms = [AddConstTransform(in_column="target", value=1)] >>> pipeline = Pipeline(model, transforms=transforms, horizon=3) >>> pipeline.set_params(**{"model.lag": 3, "transforms.0.value": 2}) Pipeline(model = NaiveModel(lag = 3, ), transforms = [AddConstTransform(in_column = 'target', value = 2, inplace = True, out_column = None, )], horizon = 3, )